Shuanghong Huang, Chong Feng, Ge Shi, Zhengjun Li, Xuan Zhao, Xinyan Li, Xiaomei Wang
{"title":"为多领域适应性神经机器翻译学习特定领域子层潜变量","authors":"Shuanghong Huang, Chong Feng, Ge Shi, Zhengjun Li, Xuan Zhao, Xinyan Li, Xiaomei Wang","doi":"10.1145/3661305","DOIUrl":null,"url":null,"abstract":"<p>Domain adaptation proves to be an effective solution for addressing inadequate translation performance within specific domains. However, the straightforward approach of mixing data from multiple domains to obtain the multi-domain neural machine translation (NMT) model can give rise to the parameter interference between domains problem, resulting in a degradation of overall performance. To address this, we introduce a multi-domain adaptive NMT method aimed at learning domain specific sub-layer latent variable and employ the Gumbel-Softmax reparameterization technique to concurrently train both model parameters and domain specific sub-layer latent variable. This approach facilitates the learning of private domain-specific knowledge while sharing common domain-invariant knowledge, effectively mitigating the parameter interference problem. The experimental results show that our proposed method significantly improved by up to 7.68 and 3.71 BLEU compared with the baseline model in English-German and Chinese-English public multi-domain datasets, respectively.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"10 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Domain Specific Sub-layer Latent Variable for Multi-Domain Adaptation Neural Machine Translation\",\"authors\":\"Shuanghong Huang, Chong Feng, Ge Shi, Zhengjun Li, Xuan Zhao, Xinyan Li, Xiaomei Wang\",\"doi\":\"10.1145/3661305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Domain adaptation proves to be an effective solution for addressing inadequate translation performance within specific domains. However, the straightforward approach of mixing data from multiple domains to obtain the multi-domain neural machine translation (NMT) model can give rise to the parameter interference between domains problem, resulting in a degradation of overall performance. To address this, we introduce a multi-domain adaptive NMT method aimed at learning domain specific sub-layer latent variable and employ the Gumbel-Softmax reparameterization technique to concurrently train both model parameters and domain specific sub-layer latent variable. This approach facilitates the learning of private domain-specific knowledge while sharing common domain-invariant knowledge, effectively mitigating the parameter interference problem. The experimental results show that our proposed method significantly improved by up to 7.68 and 3.71 BLEU compared with the baseline model in English-German and Chinese-English public multi-domain datasets, respectively.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3661305\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3661305","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning Domain Specific Sub-layer Latent Variable for Multi-Domain Adaptation Neural Machine Translation
Domain adaptation proves to be an effective solution for addressing inadequate translation performance within specific domains. However, the straightforward approach of mixing data from multiple domains to obtain the multi-domain neural machine translation (NMT) model can give rise to the parameter interference between domains problem, resulting in a degradation of overall performance. To address this, we introduce a multi-domain adaptive NMT method aimed at learning domain specific sub-layer latent variable and employ the Gumbel-Softmax reparameterization technique to concurrently train both model parameters and domain specific sub-layer latent variable. This approach facilitates the learning of private domain-specific knowledge while sharing common domain-invariant knowledge, effectively mitigating the parameter interference problem. The experimental results show that our proposed method significantly improved by up to 7.68 and 3.71 BLEU compared with the baseline model in English-German and Chinese-English public multi-domain datasets, respectively.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.