多维分数系统中解析非线性波解的稳定性分析和守恒量

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Chanyuan Wang, Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater
{"title":"多维分数系统中解析非线性波解的稳定性分析和守恒量","authors":"Chanyuan Wang, Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater","doi":"10.1142/s0217984924503688","DOIUrl":null,"url":null,"abstract":"<p>The (3+1)-dimensional generalized nonlinear fractional Konopelchenko–Dubrovsky–Kaup–Kupershmidt <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>𝔾</mi><mi>𝔽</mi><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi><mo stretchy=\"false\">)</mo></math></span><span></span> model represents the propagation and interaction of nonlinear waves in complex multi-dimensional physical media characterized by anomalous dispersion and dissipation phenomena. By incorporating fractional derivatives, this model introduces non-locality and memory effects into the classical <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi></math></span><span></span> equations, commonly utilized in phenomena such as shallow water waves, nonlinear optics, and plasma physics. The fractional approach enhances mathematical representations, allowing for a more realistic depiction of the intricate behaviors observed in numerous modern physical systems. This study focuses on the development of accurate and efficient numerical techniques tailored for the computationally demanding <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝔾</mi><mi>𝔽</mi><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi></math></span><span></span> model, leveraging the Khater II and generalized rational approximation methods. These methodologies facilitate stable time-integration, effectively addressing the model’s stiffness and multi-dimensional nature. Through numerical analysis, insights into the stability and convergence of the algorithms are gained. Simulations conducted validate the performance of these methods against established solutions while also uncovering novel capabilities for exploring complex wave dynamics in scenarios involving complete fractional formulations. The findings underscore the potential of integrating fractional calculus into higher-dimensional nonlinear partial differential equations, offering a promising avenue for advancing the modeling and computational analysis of complex wave phenomena across a spectrum of contemporary physical disciplines.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis and conserved quantities of analytic nonlinear wave solutions in multi-dimensional fractional systems\",\"authors\":\"Chanyuan Wang, Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater\",\"doi\":\"10.1142/s0217984924503688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The (3+1)-dimensional generalized nonlinear fractional Konopelchenko–Dubrovsky–Kaup–Kupershmidt <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>𝔾</mi><mi>𝔽</mi><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> model represents the propagation and interaction of nonlinear waves in complex multi-dimensional physical media characterized by anomalous dispersion and dissipation phenomena. By incorporating fractional derivatives, this model introduces non-locality and memory effects into the classical <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi></math></span><span></span> equations, commonly utilized in phenomena such as shallow water waves, nonlinear optics, and plasma physics. The fractional approach enhances mathematical representations, allowing for a more realistic depiction of the intricate behaviors observed in numerous modern physical systems. This study focuses on the development of accurate and efficient numerical techniques tailored for the computationally demanding <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝔾</mi><mi>𝔽</mi><mi>𝕂</mi><mi>𝔻</mi><mi>𝕂</mi><mi>𝕂</mi></math></span><span></span> model, leveraging the Khater II and generalized rational approximation methods. These methodologies facilitate stable time-integration, effectively addressing the model’s stiffness and multi-dimensional nature. Through numerical analysis, insights into the stability and convergence of the algorithms are gained. Simulations conducted validate the performance of these methods against established solutions while also uncovering novel capabilities for exploring complex wave dynamics in scenarios involving complete fractional formulations. The findings underscore the potential of integrating fractional calculus into higher-dimensional nonlinear partial differential equations, offering a promising avenue for advancing the modeling and computational analysis of complex wave phenomena across a spectrum of contemporary physical disciplines.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503688\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503688","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

(3+1)-dimensional generalized nonlinear fractional Konopelchenko-Dubrovsky-Kaup-Kupershmidt(𝔾𝔽𝔽𝕂𝔻𝕂𝕂)模型表示了非线性波在复杂多维物理介质中的传播和相互作用,这些介质具有反常色散和耗散现象。通过加入分数导数,该模型在经典的𝕂𝔻𝕂𝕂方程中引入了非定位和记忆效应,常用于浅水波、非线性光学和等离子物理学等现象。分数方法增强了数学表达,可以更真实地描述在众多现代物理系统中观察到的复杂行为。本研究的重点是利用 Khater II 和广义有理近似方法,为计算要求极高的𝔾𝔽𝕂𝔻𝕂𝕂模型开发精确高效的数值技术。这些方法促进了稳定的时间积分,有效地解决了模型的刚性和多维性问题。通过数值分析,可以深入了解算法的稳定性和收敛性。所进行的模拟验证了这些方法与既定解决方案的性能,同时也发现了在涉及完整分数公式的情况下探索复杂波浪动力学的新功能。研究结果强调了将分数微积分融入高维非线性偏微分方程的潜力,为推进当代物理学科复杂波现象的建模和计算分析提供了一条大有可为的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis and conserved quantities of analytic nonlinear wave solutions in multi-dimensional fractional systems

The (3+1)-dimensional generalized nonlinear fractional Konopelchenko–Dubrovsky–Kaup–Kupershmidt (𝔾𝔽𝕂𝔻𝕂𝕂) model represents the propagation and interaction of nonlinear waves in complex multi-dimensional physical media characterized by anomalous dispersion and dissipation phenomena. By incorporating fractional derivatives, this model introduces non-locality and memory effects into the classical 𝕂𝔻𝕂𝕂 equations, commonly utilized in phenomena such as shallow water waves, nonlinear optics, and plasma physics. The fractional approach enhances mathematical representations, allowing for a more realistic depiction of the intricate behaviors observed in numerous modern physical systems. This study focuses on the development of accurate and efficient numerical techniques tailored for the computationally demanding 𝔾𝔽𝕂𝔻𝕂𝕂 model, leveraging the Khater II and generalized rational approximation methods. These methodologies facilitate stable time-integration, effectively addressing the model’s stiffness and multi-dimensional nature. Through numerical analysis, insights into the stability and convergence of the algorithms are gained. Simulations conducted validate the performance of these methods against established solutions while also uncovering novel capabilities for exploring complex wave dynamics in scenarios involving complete fractional formulations. The findings underscore the potential of integrating fractional calculus into higher-dimensional nonlinear partial differential equations, offering a promising avenue for advancing the modeling and computational analysis of complex wave phenomena across a spectrum of contemporary physical disciplines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信