Essam M. Elsaid, Mohamed Abd El-Aziz, Abdelraheem M. Aly, Amani S. Alruwaili, Mohamed R. Eid
{"title":"通过可拉伸圆柱体进行磁化流体流动和热传递的物理分析和热案例:霍尔效应和熵的产生","authors":"Essam M. Elsaid, Mohamed Abd El-Aziz, Abdelraheem M. Aly, Amani S. Alruwaili, Mohamed R. Eid","doi":"10.1142/s0217984924503718","DOIUrl":null,"url":null,"abstract":"<p>The study of fluid flow in cylindrical shapes under the effect of electric fields is of utmost importance because of its vast applications in industrial, agricultural, and biomedical domains, as well as in drilling machines, equipment, transport brakes, and vehicles. The purpose of this research is to analyze the influence of Hall impacts, slippage effects, and thermal relaxation time on the magnetohydrodynamic flow near an extended cylinder or flat plate. An assessment of entropy generation is carried out. Results are determined by the process of elongating a planar surface and a cylindrical object. The velocity field and entropy production are greater in the case of a stretched cylinder compared to a stretching flat plate. The choice of an appropriate stretching surface may have an impact on the thermal conductivity of the boundary layer. Velocity, temperature, and entropy are influenced by several factors including the Eckert number, thermal relaxation time, transverse curvature, magnetic field, Hall effect, molecular slip, and mixed convection parameters. These characteristics influence the movement of fluid, the transfer of heat, the measure of disorder (entropy), and the Bejan number. The variables mentioned cause changes in skin friction and Nusselt values. The Hall effect has advantages in reducing friction and enhancing heat transfer in industrial and technical processes.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"176 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical analysis and thermal case of magnetized fluid flow and heat transfer via stretchable cylinder: Hall impact and entropy generation\",\"authors\":\"Essam M. Elsaid, Mohamed Abd El-Aziz, Abdelraheem M. Aly, Amani S. Alruwaili, Mohamed R. Eid\",\"doi\":\"10.1142/s0217984924503718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of fluid flow in cylindrical shapes under the effect of electric fields is of utmost importance because of its vast applications in industrial, agricultural, and biomedical domains, as well as in drilling machines, equipment, transport brakes, and vehicles. The purpose of this research is to analyze the influence of Hall impacts, slippage effects, and thermal relaxation time on the magnetohydrodynamic flow near an extended cylinder or flat plate. An assessment of entropy generation is carried out. Results are determined by the process of elongating a planar surface and a cylindrical object. The velocity field and entropy production are greater in the case of a stretched cylinder compared to a stretching flat plate. The choice of an appropriate stretching surface may have an impact on the thermal conductivity of the boundary layer. Velocity, temperature, and entropy are influenced by several factors including the Eckert number, thermal relaxation time, transverse curvature, magnetic field, Hall effect, molecular slip, and mixed convection parameters. These characteristics influence the movement of fluid, the transfer of heat, the measure of disorder (entropy), and the Bejan number. The variables mentioned cause changes in skin friction and Nusselt values. The Hall effect has advantages in reducing friction and enhancing heat transfer in industrial and technical processes.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503718\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503718","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Physical analysis and thermal case of magnetized fluid flow and heat transfer via stretchable cylinder: Hall impact and entropy generation
The study of fluid flow in cylindrical shapes under the effect of electric fields is of utmost importance because of its vast applications in industrial, agricultural, and biomedical domains, as well as in drilling machines, equipment, transport brakes, and vehicles. The purpose of this research is to analyze the influence of Hall impacts, slippage effects, and thermal relaxation time on the magnetohydrodynamic flow near an extended cylinder or flat plate. An assessment of entropy generation is carried out. Results are determined by the process of elongating a planar surface and a cylindrical object. The velocity field and entropy production are greater in the case of a stretched cylinder compared to a stretching flat plate. The choice of an appropriate stretching surface may have an impact on the thermal conductivity of the boundary layer. Velocity, temperature, and entropy are influenced by several factors including the Eckert number, thermal relaxation time, transverse curvature, magnetic field, Hall effect, molecular slip, and mixed convection parameters. These characteristics influence the movement of fluid, the transfer of heat, the measure of disorder (entropy), and the Bejan number. The variables mentioned cause changes in skin friction and Nusselt values. The Hall effect has advantages in reducing friction and enhancing heat transfer in industrial and technical processes.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.