具有增强界面粘合力的黄麻纺织品作为水泥基复合材料的增强材料

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Lais Kohan, Carlos A Fioroni, Adriano GDS Azevedo, Barbara Leonardi, Julia Baruque-Ramos, Raul Fangueiro, Holmer Savastano Junior
{"title":"具有增强界面粘合力的黄麻纺织品作为水泥基复合材料的增强材料","authors":"Lais Kohan, Carlos A Fioroni, Adriano GDS Azevedo, Barbara Leonardi, Julia Baruque-Ramos, Raul Fangueiro, Holmer Savastano Junior","doi":"10.1177/00219983241249237","DOIUrl":null,"url":null,"abstract":"In fabric-cement composites, the limited impregnation of cementitious matrix products due to thick and twisted yarns leads to premature failure due to poor bonding strength. In addition, cellulosic textile reinforcements have many challenges about durability, appearance of voids at mortar-fiber interface, and rise of microcracks. Textile performances were evaluated in different conditions: coated with micro-silica powder, pretreated, and without any treatment. This study also assessed how textile weave structure and yarn geometry configuration affect the interactions of two different jute textiles (Close Weave Jute Fabric – CJF and Open Weave Jute Fabric - OJT) when used as reinforcement in mortar matrix. Textile characterization and composite analysis (by four-point bending tests, SEM/EDS, and physical tests) were conducted to assess the different textile reinforcements, the mechanical behavior of produced composites, and visual and chemical compounds analysis of the interfacial transition zone between textile and mortar matrix after silica coating. Micro silica powder coating was deemed necessary to address limited impregnation and to avoid telescope pull-off. Weave structure determined the difference between jute fabrics to reinforce mortar matrix, being only OJF (larger interstices in the weave structure) with micro silica coating allowed a better matrix interaction and stood out from the other textiles and achieved the best specific energy of all samples, (4.28 ± 0.91) kJ.m-2. Calcium and silicon inside the yarn interstices and textile-matrix interface indicate the formation of strong bonds by calcium-silicate-hydrate products. The silica coating treatment enhanced formation of strong bonds, which demonstrated future promise for natural fiber application.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jute textiles with enhanced interfacial bonding as reinforcement for cementitious composites\",\"authors\":\"Lais Kohan, Carlos A Fioroni, Adriano GDS Azevedo, Barbara Leonardi, Julia Baruque-Ramos, Raul Fangueiro, Holmer Savastano Junior\",\"doi\":\"10.1177/00219983241249237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In fabric-cement composites, the limited impregnation of cementitious matrix products due to thick and twisted yarns leads to premature failure due to poor bonding strength. In addition, cellulosic textile reinforcements have many challenges about durability, appearance of voids at mortar-fiber interface, and rise of microcracks. Textile performances were evaluated in different conditions: coated with micro-silica powder, pretreated, and without any treatment. This study also assessed how textile weave structure and yarn geometry configuration affect the interactions of two different jute textiles (Close Weave Jute Fabric – CJF and Open Weave Jute Fabric - OJT) when used as reinforcement in mortar matrix. Textile characterization and composite analysis (by four-point bending tests, SEM/EDS, and physical tests) were conducted to assess the different textile reinforcements, the mechanical behavior of produced composites, and visual and chemical compounds analysis of the interfacial transition zone between textile and mortar matrix after silica coating. Micro silica powder coating was deemed necessary to address limited impregnation and to avoid telescope pull-off. Weave structure determined the difference between jute fabrics to reinforce mortar matrix, being only OJF (larger interstices in the weave structure) with micro silica coating allowed a better matrix interaction and stood out from the other textiles and achieved the best specific energy of all samples, (4.28 ± 0.91) kJ.m-2. Calcium and silicon inside the yarn interstices and textile-matrix interface indicate the formation of strong bonds by calcium-silicate-hydrate products. The silica coating treatment enhanced formation of strong bonds, which demonstrated future promise for natural fiber application.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241249237\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241249237","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在纤维水泥复合材料中,由于纱线粗且扭曲,水泥基质产品的浸渍有限,导致粘结强度低而过早失效。此外,纤维素纺织加固材料在耐久性、砂浆-纤维界面空隙的出现以及微裂缝的产生等方面也面临许多挑战。我们在不同条件下对纺织品的性能进行了评估:涂覆微硅粉、预处理和未做任何处理。这项研究还评估了纺织品编织结构和纱线几何配置如何影响两种不同黄麻纺织品(密织黄麻织物 - CJF 和开织黄麻织物 - OJT)在砂浆基体中用作加固材料时的相互作用。为了评估不同纺织加固材料、所生产复合材料的机械性能以及涂覆二氧化硅后纺织品与砂浆基体之间界面过渡区的视觉和化学成分分析,对纺织品进行了表征和复合材料分析(通过四点弯曲测试、扫描电镜/电子显微镜和物理测试)。微硅粉涂层被认为是解决有限浸渍和避免望远镜脱落所必需的。编织结构决定了黄麻织物在加固砂浆基质方面的差异,只有 OJF(编织结构中的间隙较大)与微量二氧化硅涂层能够更好地与基质相互作用,并在所有样品中脱颖而出,获得最佳比能量(4.28 ± 0.91)kJ.m-2。纱线间隙和纺织品与基质界面内的钙和硅表明钙硅酸盐水合物形成了牢固的结合。二氧化硅涂层处理增强了强键的形成,这表明天然纤维的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jute textiles with enhanced interfacial bonding as reinforcement for cementitious composites
In fabric-cement composites, the limited impregnation of cementitious matrix products due to thick and twisted yarns leads to premature failure due to poor bonding strength. In addition, cellulosic textile reinforcements have many challenges about durability, appearance of voids at mortar-fiber interface, and rise of microcracks. Textile performances were evaluated in different conditions: coated with micro-silica powder, pretreated, and without any treatment. This study also assessed how textile weave structure and yarn geometry configuration affect the interactions of two different jute textiles (Close Weave Jute Fabric – CJF and Open Weave Jute Fabric - OJT) when used as reinforcement in mortar matrix. Textile characterization and composite analysis (by four-point bending tests, SEM/EDS, and physical tests) were conducted to assess the different textile reinforcements, the mechanical behavior of produced composites, and visual and chemical compounds analysis of the interfacial transition zone between textile and mortar matrix after silica coating. Micro silica powder coating was deemed necessary to address limited impregnation and to avoid telescope pull-off. Weave structure determined the difference between jute fabrics to reinforce mortar matrix, being only OJF (larger interstices in the weave structure) with micro silica coating allowed a better matrix interaction and stood out from the other textiles and achieved the best specific energy of all samples, (4.28 ± 0.91) kJ.m-2. Calcium and silicon inside the yarn interstices and textile-matrix interface indicate the formation of strong bonds by calcium-silicate-hydrate products. The silica coating treatment enhanced formation of strong bonds, which demonstrated future promise for natural fiber application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信