黎曼超曲面上的黎奇孤子源自黎曼和洛伦兹方程中的封闭共形矢量场

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Norah Alshehri, Mohammed Guediri
{"title":"黎曼超曲面上的黎奇孤子源自黎曼和洛伦兹方程中的封闭共形矢量场","authors":"Norah Alshehri, Mohammed Guediri","doi":"10.1007/s44198-024-00190-4","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates Ricci solitons on Riemannian hypersurfaces in both Riemannian and Lorentzian manifolds. We provide conditions under which a Riemannian hypersurface, exhibiting specific properties related to a closed conformal vector field of the ambiant manifold, forms a Ricci soliton structure. The characterization involves a delicate balance between geometric quantities and the behavior of the conformal vector field, particularly its tangential component. We extend the analysis to ambient manifolds with constant sectional curvature and establish that, under a simple condition, the hypersurface becomes totally umbilical, implying constant mean curvature and sectional curvature. For compact hypersurfaces, we further characterize the nature of the Ricci soliton.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ricci Solitons on Riemannian Hypersurfaces Arising from Closed Conformal Vector Fields in Riemannian and Lorentzian Manifolds\",\"authors\":\"Norah Alshehri, Mohammed Guediri\",\"doi\":\"10.1007/s44198-024-00190-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates Ricci solitons on Riemannian hypersurfaces in both Riemannian and Lorentzian manifolds. We provide conditions under which a Riemannian hypersurface, exhibiting specific properties related to a closed conformal vector field of the ambiant manifold, forms a Ricci soliton structure. The characterization involves a delicate balance between geometric quantities and the behavior of the conformal vector field, particularly its tangential component. We extend the analysis to ambient manifolds with constant sectional curvature and establish that, under a simple condition, the hypersurface becomes totally umbilical, implying constant mean curvature and sectional curvature. For compact hypersurfaces, we further characterize the nature of the Ricci soliton.</p>\",\"PeriodicalId\":48904,\"journal\":{\"name\":\"Journal of Nonlinear Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s44198-024-00190-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00190-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了黎曼流形和洛伦兹流形中黎曼超曲面上的黎奇孤子。我们提供了一些条件,在这些条件下,表现出与环境流形的封闭共形向量场相关的特定性质的黎曼超曲面会形成黎奇孤子结构。这一特征涉及几何量与共形向量场行为(尤其是其切向分量)之间的微妙平衡。我们将分析扩展到具有恒定截面曲率的环境流形,并确定在一个简单的条件下,超曲面变得完全脐形,这意味着恒定的平均曲率和截面曲率。对于紧凑超曲面,我们进一步描述了利玛窦孤子的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ricci Solitons on Riemannian Hypersurfaces Arising from Closed Conformal Vector Fields in Riemannian and Lorentzian Manifolds

This paper investigates Ricci solitons on Riemannian hypersurfaces in both Riemannian and Lorentzian manifolds. We provide conditions under which a Riemannian hypersurface, exhibiting specific properties related to a closed conformal vector field of the ambiant manifold, forms a Ricci soliton structure. The characterization involves a delicate balance between geometric quantities and the behavior of the conformal vector field, particularly its tangential component. We extend the analysis to ambient manifolds with constant sectional curvature and establish that, under a simple condition, the hypersurface becomes totally umbilical, implying constant mean curvature and sectional curvature. For compact hypersurfaces, we further characterize the nature of the Ricci soliton.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信