稀疏图的拉姆齐数

IF 0.8 2区 数学 Q2 MATHEMATICS
Jacob Fox, Xiaoyu He, Yuval Wigderson
{"title":"稀疏图的拉姆齐数","authors":"Jacob Fox, Xiaoyu He, Yuval Wigderson","doi":"10.1007/s11856-024-2624-y","DOIUrl":null,"url":null,"abstract":"<p>Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If <i>H</i> is an acyclic digraph, the oriented Ramsey number of <i>H</i>, denoted <span>\\(\\overrightarrow {{r_1}} (H)\\)</span>, is the least <i>N</i> such that every tournament on <i>N</i> vertices contains a copy of <i>H</i>. We show that for any Δ ≥ 2 and any sufficiently large <i>n</i>, there exists an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree Δ such that </p><span>$$\\overrightarrow {{r_1}} (H) \\ge {n^{\\Omega ({\\Delta ^{2/3}}/{{\\log }^{5/3}}\\,\\Delta )}}.$$</span><p>This proves that <span>\\(\\overrightarrow {{r_1}} (H)\\)</span> is not always linear in the number of vertices for bounded-degree <i>H</i>. On the other hand, we show that <span>\\(\\overrightarrow {{r_1}} (H)\\)</span> is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs <i>H</i>, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.</p><p>For multiple colors, we prove a quasi-polynomial upper bound <span>\\(\\overrightarrow {{r_k}} (H) = {2^{{{(\\log \\,n)}^{{O_k}(1)}}}}\\)</span> for all bounded-de gree acyclic digraphs <i>H</i> on <i>n</i> vertices, where <span>\\(\\overrightarrow {{r_k}} (H)\\)</span> is the least <i>N</i> such that every <i>k</i>-edge-colored tournament on <i>N</i> vertices contains a monochromatic copy of <i>H</i>. For <i>k</i> ≥ 2 and <i>n</i> ≥ 4, we exhibit an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree 3 such that <span>\\(\\overrightarrow {{r_k}} (H) \\ge {n^{\\Omega (\\log \\,n/\\log \\log \\,n)}}\\)</span>, showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey numbers of sparse digraphs\",\"authors\":\"Jacob Fox, Xiaoyu He, Yuval Wigderson\",\"doi\":\"10.1007/s11856-024-2624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If <i>H</i> is an acyclic digraph, the oriented Ramsey number of <i>H</i>, denoted <span>\\\\(\\\\overrightarrow {{r_1}} (H)\\\\)</span>, is the least <i>N</i> such that every tournament on <i>N</i> vertices contains a copy of <i>H</i>. We show that for any Δ ≥ 2 and any sufficiently large <i>n</i>, there exists an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree Δ such that </p><span>$$\\\\overrightarrow {{r_1}} (H) \\\\ge {n^{\\\\Omega ({\\\\Delta ^{2/3}}/{{\\\\log }^{5/3}}\\\\,\\\\Delta )}}.$$</span><p>This proves that <span>\\\\(\\\\overrightarrow {{r_1}} (H)\\\\)</span> is not always linear in the number of vertices for bounded-degree <i>H</i>. On the other hand, we show that <span>\\\\(\\\\overrightarrow {{r_1}} (H)\\\\)</span> is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs <i>H</i>, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.</p><p>For multiple colors, we prove a quasi-polynomial upper bound <span>\\\\(\\\\overrightarrow {{r_k}} (H) = {2^{{{(\\\\log \\\\,n)}^{{O_k}(1)}}}}\\\\)</span> for all bounded-de gree acyclic digraphs <i>H</i> on <i>n</i> vertices, where <span>\\\\(\\\\overrightarrow {{r_k}} (H)\\\\)</span> is the least <i>N</i> such that every <i>k</i>-edge-colored tournament on <i>N</i> vertices contains a monochromatic copy of <i>H</i>. For <i>k</i> ≥ 2 and <i>n</i> ≥ 4, we exhibit an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree 3 such that <span>\\\\(\\\\overrightarrow {{r_k}} (H) \\\\ge {n^{\\\\Omega (\\\\log \\\\,n/\\\\log \\\\log \\\\,n)}}\\\\)</span>, showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2624-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2624-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Burr 和 Erdős 在 1975 年猜想,Chvátal、Rödl、Szemerédi 和 Trotter 随后证明,任何有界度图的拉姆齐数与顶点数呈线性关系。在本文中,我们反证了 Burr-Erdős 猜想的自然有向类比,回答了 Bucić、Letzter 和 Sudakov 的一个问题。如果 H 是一个非循环数图,那么 H 的定向拉姆齐数表示为 \(\overrightarrow {{r_1}}), 是 \(\overrightarrow {{r_1}}).(我们证明,对于任意 Δ ≥ 2 和任意足够大的 n,存在一个具有 n 个顶点和最大度 Δ 的无循环数图 H,使得 $$\overrightarrow {{r_1}}(H) \ge {n^{Omega ({\Delta ^{2/3}}/{\log }^{5/3}}}\,\Delta )}} 。(H)\) 并不总是与有界度 H 的顶点数呈线性关系。(H)\) 对于典型的有界度无循环图 H 的顶点数来说几乎是线性的,而且我们还得到了有界度无循环图的几个自然族的线性或接近线性的边界。(H) = {2^{{((log \,n)}^{O_k}(1)}}}}\)适用于 n 个顶点上的所有有界无度非循环数图 H,其中 (\(\overrightarrow {{r_k}} (H)\)是有界无度非循环数图 H 的上界。(对于 k ≥ 2 和 n ≥ 4,我们展示了一个有 n 个顶点、最大阶数为 3 的无循环数图 H,使得(H) \ge {n^{\Omega (\log \,n/\log \log \,n)}}),表明这些拉姆齐数的增长速度可以超过顶点数的任何多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramsey numbers of sparse digraphs

Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If H is an acyclic digraph, the oriented Ramsey number of H, denoted \(\overrightarrow {{r_1}} (H)\), is the least N such that every tournament on N vertices contains a copy of H. We show that for any Δ ≥ 2 and any sufficiently large n, there exists an acyclic digraph H with n vertices and maximum degree Δ such that

$$\overrightarrow {{r_1}} (H) \ge {n^{\Omega ({\Delta ^{2/3}}/{{\log }^{5/3}}\,\Delta )}}.$$

This proves that \(\overrightarrow {{r_1}} (H)\) is not always linear in the number of vertices for bounded-degree H. On the other hand, we show that \(\overrightarrow {{r_1}} (H)\) is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs H, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.

For multiple colors, we prove a quasi-polynomial upper bound \(\overrightarrow {{r_k}} (H) = {2^{{{(\log \,n)}^{{O_k}(1)}}}}\) for all bounded-de gree acyclic digraphs H on n vertices, where \(\overrightarrow {{r_k}} (H)\) is the least N such that every k-edge-colored tournament on N vertices contains a monochromatic copy of H. For k ≥ 2 and n ≥ 4, we exhibit an acyclic digraph H with n vertices and maximum degree 3 such that \(\overrightarrow {{r_k}} (H) \ge {n^{\Omega (\log \,n/\log \log \,n)}}\), showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信