快速估算多面体的体积

IF 0.8 2区 数学 Q2 MATHEMATICS
Alexander Barvinok, Mark Rudelson
{"title":"快速估算多面体的体积","authors":"Alexander Barvinok, Mark Rudelson","doi":"10.1007/s11856-024-2615-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>P</i> be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ<span>\n<sup><i>n</i></sup><sub>+</sub>\n</span> and an affine subspace of codimension <i>m</i> in ℝ<sup><i>n</i></sup>. We show that a simple and computationally efficient formula approximates the volume of <i>P</i> within a factor of <i>γ</i><sup><i>m</i></sup>, where <i>γ</i> &gt; 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quick estimate for the volume of a polyhedron\",\"authors\":\"Alexander Barvinok, Mark Rudelson\",\"doi\":\"10.1007/s11856-024-2615-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>P</i> be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ<span>\\n<sup><i>n</i></sup><sub>+</sub>\\n</span> and an affine subspace of codimension <i>m</i> in ℝ<sup><i>n</i></sup>. We show that a simple and computationally efficient formula approximates the volume of <i>P</i> within a factor of <i>γ</i><sup><i>m</i></sup>, where <i>γ</i> &gt; 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2615-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2615-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 P 是一个有界多面体,定义为非负正交ℝn+ 与ℝn 中标度为 m 的仿射子空间的交集。我们证明,一个简单且计算效率高的公式可以将 P 的体积逼近到 γm 的系数之内,其中 γ > 0 是一个绝对常量。该公式是目前已知的对运输多边形体积的最佳估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quick estimate for the volume of a polyhedron

Let P be a bounded polyhedron defined as the intersection of the non-negative orthant ℝ n+ and an affine subspace of codimension m in ℝn. We show that a simple and computationally efficient formula approximates the volume of P within a factor of γm, where γ > 0 is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信