仿射 q-Schur 结构中的单元格

Pub Date : 2024-04-24 DOI:10.1007/s11856-024-2620-2
Weideng Cui, Li Luo, Weiqiang Wang
{"title":"仿射 q-Schur 结构中的单元格","authors":"Weideng Cui, Li Luo, Weiqiang Wang","doi":"10.1007/s11856-024-2620-2","DOIUrl":null,"url":null,"abstract":"<p>We develop algebraic and geometrical approaches toward canonical bases for affine <i>q</i>-Schur algebras of arbitrary type introduced in this paper. A duality between an affine <i>q</i>-Schur algebra and a corresponding affine Hecke algebra is established. We introduce an inner product on the affine <i>q</i>-Schur algebra, with respect to which the canonical basis is shown to be positive and almost orthonormal. We then formulate the cells and asymptotic forms for affine <i>q</i>-Schur algebras, and develop their basic properties analogous to the cells and asymptotic forms for affine Hecke algebras established by Lusztig. The results on cells and asymptotic algebras are also valid for <i>q</i>-Schur algebras of arbitrary finite type.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cells in affine q-Schur algebras\",\"authors\":\"Weideng Cui, Li Luo, Weiqiang Wang\",\"doi\":\"10.1007/s11856-024-2620-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop algebraic and geometrical approaches toward canonical bases for affine <i>q</i>-Schur algebras of arbitrary type introduced in this paper. A duality between an affine <i>q</i>-Schur algebra and a corresponding affine Hecke algebra is established. We introduce an inner product on the affine <i>q</i>-Schur algebra, with respect to which the canonical basis is shown to be positive and almost orthonormal. We then formulate the cells and asymptotic forms for affine <i>q</i>-Schur algebras, and develop their basic properties analogous to the cells and asymptotic forms for affine Hecke algebras established by Lusztig. The results on cells and asymptotic algebras are also valid for <i>q</i>-Schur algebras of arbitrary finite type.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2620-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2620-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为本文引入的任意类型仿射 q-Schur 代数建立了代数和几何的规范基础。仿射 q-Schur 代数与相应的仿射 Hecke 代数之间的对偶性得以建立。我们在仿射 q-Schur 代数上引入了一个内积,并证明了该内积的规范基础是正的且几乎是正交的。然后,我们提出了仿射 q-Schur 代数的单元和渐近形式,并发展了它们的基本性质,类似于 Lusztig 建立的仿射 Hecke 代数的单元和渐近形式。关于单元和渐近代数的结果也适用于任意有限类型的 q-Schur 代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Cells in affine q-Schur algebras

We develop algebraic and geometrical approaches toward canonical bases for affine q-Schur algebras of arbitrary type introduced in this paper. A duality between an affine q-Schur algebra and a corresponding affine Hecke algebra is established. We introduce an inner product on the affine q-Schur algebra, with respect to which the canonical basis is shown to be positive and almost orthonormal. We then formulate the cells and asymptotic forms for affine q-Schur algebras, and develop their basic properties analogous to the cells and asymptotic forms for affine Hecke algebras established by Lusztig. The results on cells and asymptotic algebras are also valid for q-Schur algebras of arbitrary finite type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信