抽象因式分解定理及其在幂等因式分解中的应用

Pub Date : 2024-04-24 DOI:10.1007/s11856-024-2623-z
Laura Cossu, Salvatore Tringali
{"title":"抽象因式分解定理及其在幂等因式分解中的应用","authors":"Laura Cossu, Salvatore Tringali","doi":"10.1007/s11856-024-2623-z","DOIUrl":null,"url":null,"abstract":"<p>Let ⪯ be a preorder on a monoid <i>H</i> with identity 1<sub><i>H</i></sub> and <i>s</i> be an integer ≥ 2. The ⪯-height of an element <i>x</i> ∈ <i>H</i> is the supremum of the integers <i>k</i> ≥ 1 for which there is a (strictly) ⪯-decreasing sequence <i>x</i><sub>1</sub>, …, <i>x</i><sub><i>k</i></sub> of ⪯-non-units of <i>H</i> with <i>x</i><sub>1</sub> = <i>x</i>, where <i>u</i> ∈ <i>H</i> is a ⪯-unit if <i>u</i> ⪯ 1<sub><i>H</i></sub> ⪯ <i>u</i> and a ⪯-non-unit otherwise. We say <i>H</i> is ⪯-artinian if there is no infinite ⪯-decreasing sequence of elements of <i>H</i>, and strongly ⪯-artinian if the ⪯-height of each element is finite.</p><p>We establish that, if <i>H</i> is ⪯-artinian, then each ⪯-non-unit <i>x</i> ∈ <i>H</i> factors through the ⪯-irreducibles of degree <i>s</i>, where a ⪯-irreducible of degree <i>s</i> is a ⪯-non-unit <i>a</i> ∈ <i>H</i> that cannot be written as a product of <i>s</i> or fewer ⪯-non-units each of which is (strictly) smaller than <i>a</i> with respect to ⪯. In addition, we show that, if <i>H</i> is strongly ⪯-artinian, then <i>x</i> factors through the ⪯-quarks of <i>H</i>, where a ⪯-quark is a ⪯-minimal ⪯-non-unit. In the process, we obtain upper bounds for the length of a shortest factorization of <i>x</i> into ⪯-irreducibles of degree <i>s</i> (resp., ⪯-quarks) in terms of its ⪯-height.</p><p>Next, we specialize these results to the case in which (i) <i>H</i> is the multiplicative submonoid of a ring <i>R</i> formed by the zero divisors of <i>R</i> (and the identity 1<sub><i>R</i></sub>) and (ii) <i>a</i> ⪯ <i>b</i> if and only if the right annihilator of 1<sub><i>R</i></sub> − <i>b</i> is contained in the right annihilator of 1<sub><i>R</i></sub> − <i>a</i>. If <i>H</i> is ⪯-artinian (resp., strongly ⪯-artinian), then every zero divisor of <i>R</i> factors as a product of ⪯-irreducibles of degree <i>s</i> (resp., ⪯-quarks); and we prove that, for a variety of right Rickart rings, either the ⪯-quarks or the ⪯-irreducibles of degree 2 or 3 are coprimitive idempotents (an idempotent <i>e</i> ∈ <i>R</i> is coprimitive if 1<sub><i>R</i></sub> − <i>e</i> is primitive). In the latter case, we also derive sharp upper bounds for the length of a shortest idempotent factorization of a zero divisor <i>x</i> ∈ <i>R</i> in terms of the ⪯-height of <i>x</i> and the uniform dimension of <i>R</i><sub><i>R</i></sub>. In particular, we can thus recover and improve on classical theorems of J. A. Erdos (1967), R.J.H. Dawlings (1981), and J. Fountain (1991) on idempotent factorizations in the endomorphism ring of a free module of finite rank over a skew field or a commutative DVD (e.g., we find that every singular <i>n</i>-by-<i>n</i> matrix over a commutative DVD, with <i>n</i> ≥ 2, is a product of 2<i>n</i> − 2 or fewer idempotent matrices of rank <i>n</i> − 1).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract factorization theorems with applications to idempotent factorizations\",\"authors\":\"Laura Cossu, Salvatore Tringali\",\"doi\":\"10.1007/s11856-024-2623-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let ⪯ be a preorder on a monoid <i>H</i> with identity 1<sub><i>H</i></sub> and <i>s</i> be an integer ≥ 2. The ⪯-height of an element <i>x</i> ∈ <i>H</i> is the supremum of the integers <i>k</i> ≥ 1 for which there is a (strictly) ⪯-decreasing sequence <i>x</i><sub>1</sub>, …, <i>x</i><sub><i>k</i></sub> of ⪯-non-units of <i>H</i> with <i>x</i><sub>1</sub> = <i>x</i>, where <i>u</i> ∈ <i>H</i> is a ⪯-unit if <i>u</i> ⪯ 1<sub><i>H</i></sub> ⪯ <i>u</i> and a ⪯-non-unit otherwise. We say <i>H</i> is ⪯-artinian if there is no infinite ⪯-decreasing sequence of elements of <i>H</i>, and strongly ⪯-artinian if the ⪯-height of each element is finite.</p><p>We establish that, if <i>H</i> is ⪯-artinian, then each ⪯-non-unit <i>x</i> ∈ <i>H</i> factors through the ⪯-irreducibles of degree <i>s</i>, where a ⪯-irreducible of degree <i>s</i> is a ⪯-non-unit <i>a</i> ∈ <i>H</i> that cannot be written as a product of <i>s</i> or fewer ⪯-non-units each of which is (strictly) smaller than <i>a</i> with respect to ⪯. In addition, we show that, if <i>H</i> is strongly ⪯-artinian, then <i>x</i> factors through the ⪯-quarks of <i>H</i>, where a ⪯-quark is a ⪯-minimal ⪯-non-unit. In the process, we obtain upper bounds for the length of a shortest factorization of <i>x</i> into ⪯-irreducibles of degree <i>s</i> (resp., ⪯-quarks) in terms of its ⪯-height.</p><p>Next, we specialize these results to the case in which (i) <i>H</i> is the multiplicative submonoid of a ring <i>R</i> formed by the zero divisors of <i>R</i> (and the identity 1<sub><i>R</i></sub>) and (ii) <i>a</i> ⪯ <i>b</i> if and only if the right annihilator of 1<sub><i>R</i></sub> − <i>b</i> is contained in the right annihilator of 1<sub><i>R</i></sub> − <i>a</i>. If <i>H</i> is ⪯-artinian (resp., strongly ⪯-artinian), then every zero divisor of <i>R</i> factors as a product of ⪯-irreducibles of degree <i>s</i> (resp., ⪯-quarks); and we prove that, for a variety of right Rickart rings, either the ⪯-quarks or the ⪯-irreducibles of degree 2 or 3 are coprimitive idempotents (an idempotent <i>e</i> ∈ <i>R</i> is coprimitive if 1<sub><i>R</i></sub> − <i>e</i> is primitive). In the latter case, we also derive sharp upper bounds for the length of a shortest idempotent factorization of a zero divisor <i>x</i> ∈ <i>R</i> in terms of the ⪯-height of <i>x</i> and the uniform dimension of <i>R</i><sub><i>R</i></sub>. In particular, we can thus recover and improve on classical theorems of J. A. Erdos (1967), R.J.H. Dawlings (1981), and J. Fountain (1991) on idempotent factorizations in the endomorphism ring of a free module of finite rank over a skew field or a commutative DVD (e.g., we find that every singular <i>n</i>-by-<i>n</i> matrix over a commutative DVD, with <i>n</i> ≥ 2, is a product of 2<i>n</i> − 2 or fewer idempotent matrices of rank <i>n</i> − 1).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2623-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2623-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设⪯是单元 H 上的前序,其特征为 1H,s 是≥ 2 的整数。元素 x∈H 的⪯高是整数 k≥1 的上集,对于这些整数,H 的⪯非单元有一个(严格)⪯递减序列 x1, ..., xk,且 x1 = x,其中如果 u ⪯ 1H ⪯ u,则 u∈H 是⪯单元,否则是⪯非单元。如果 H 中不存在元素的无限⪯递减序列,我们就说 H 是⪯自变量;如果每个元素的⪯高度都是有限的,我们就说 H 是强⪯自变量。我们将证明,如果 H 是⪯-自顶性的,那么每个 ⪯ 非单元 x∈ H 都会通过度数为 s 的⪯-irreducibles 因子、其中,度数为 s 的⪯-irreducible 是一个 ∈ H 的⪯-非单元 a,它不能被写成 s 个或更少的⪯-非单元的乘积,而每个⪯-非单元相对于⪯都(严格地)小于 a。此外,我们还证明,如果 H 是强⪯-artinian,那么 x 因子穿过 H 的⪯-夸克,其中一个⪯-夸克是一个⪯-最小⪯-非单位。在这个过程中,我们得到了把 x 分解成 s 度⪯irreducibles(res、⪯-接下来,我们将这些结果特化到以下情况:(i) H 是由 R 的零除数(和同一性 1R)形成的环 R 的乘法子单体;(ii) a ⪯ b 当且仅当 1R - b 的右湮子包含在 1R - a 的右湮子中、强 ⪯-artinian ),那么 R 的每个零因子都是 s 度 ⪯-irreducibles 的乘积(res、⪯-夸克)的乘积;而且我们证明,对于各种右瑞卡环,度数为 2 或 3 的⪯-夸克或⪯-irreducibles 都是共元偶等子(如果 1R - e 是基元,则偶等子 e∈R 是共元的)。在后一种情况下,我们还根据 x 的⪯高和 RR 的统一维度,推导出了零除数 x∈R 的最短幂因式分解长度的尖锐上限。特别是,我们可以恢复并改进 J. A. Erdos (1967)、R.J.H. Dawlings (1981) 和 J. Fountain (1991) 关于倾斜域或交换 DVD 上有限秩自由模块的内定因式环中的幂因式分解的经典定理(例如、我们发现换元 DVD 上 n ≥ 2 的每个 n-by-n 奇异矩阵都是 2n - 2 个或更少的 n - 1 级等价矩阵的乘积)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Abstract factorization theorems with applications to idempotent factorizations

Let ⪯ be a preorder on a monoid H with identity 1H and s be an integer ≥ 2. The ⪯-height of an element xH is the supremum of the integers k ≥ 1 for which there is a (strictly) ⪯-decreasing sequence x1, …, xk of ⪯-non-units of H with x1 = x, where uH is a ⪯-unit if u ⪯ 1Hu and a ⪯-non-unit otherwise. We say H is ⪯-artinian if there is no infinite ⪯-decreasing sequence of elements of H, and strongly ⪯-artinian if the ⪯-height of each element is finite.

We establish that, if H is ⪯-artinian, then each ⪯-non-unit xH factors through the ⪯-irreducibles of degree s, where a ⪯-irreducible of degree s is a ⪯-non-unit aH that cannot be written as a product of s or fewer ⪯-non-units each of which is (strictly) smaller than a with respect to ⪯. In addition, we show that, if H is strongly ⪯-artinian, then x factors through the ⪯-quarks of H, where a ⪯-quark is a ⪯-minimal ⪯-non-unit. In the process, we obtain upper bounds for the length of a shortest factorization of x into ⪯-irreducibles of degree s (resp., ⪯-quarks) in terms of its ⪯-height.

Next, we specialize these results to the case in which (i) H is the multiplicative submonoid of a ring R formed by the zero divisors of R (and the identity 1R) and (ii) ab if and only if the right annihilator of 1Rb is contained in the right annihilator of 1Ra. If H is ⪯-artinian (resp., strongly ⪯-artinian), then every zero divisor of R factors as a product of ⪯-irreducibles of degree s (resp., ⪯-quarks); and we prove that, for a variety of right Rickart rings, either the ⪯-quarks or the ⪯-irreducibles of degree 2 or 3 are coprimitive idempotents (an idempotent eR is coprimitive if 1Re is primitive). In the latter case, we also derive sharp upper bounds for the length of a shortest idempotent factorization of a zero divisor xR in terms of the ⪯-height of x and the uniform dimension of RR. In particular, we can thus recover and improve on classical theorems of J. A. Erdos (1967), R.J.H. Dawlings (1981), and J. Fountain (1991) on idempotent factorizations in the endomorphism ring of a free module of finite rank over a skew field or a commutative DVD (e.g., we find that every singular n-by-n matrix over a commutative DVD, with n ≥ 2, is a product of 2n − 2 or fewer idempotent matrices of rank n − 1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信