来自简约积的三角剖分的定向矩阵

Marcel Celaya, Georg Loho, Chi Ho Yuen
{"title":"来自简约积的三角剖分的定向矩阵","authors":"Marcel Celaya, Georg Loho, Chi Ho Yuen","doi":"10.1007/s00029-024-00938-2","DOIUrl":null,"url":null,"abstract":"<p>We introduce a construction of oriented matroids from a triangulation of a product of two simplices. For this, we use the structure of such a triangulation in terms of polyhedral matching fields. The oriented matroid is composed of compatible chirotopes on the cells in a matroid subdivision of the hypersimplex, which might be of independent interest. In particular, we generalize this using the language of matroids over hyperfields, which gives a new approach to construct matroids over hyperfields. A recurring theme in our work is that various tropical constructions can be extended beyond tropicalization with new formulations and proof methods.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oriented matroids from triangulations of products of simplices\",\"authors\":\"Marcel Celaya, Georg Loho, Chi Ho Yuen\",\"doi\":\"10.1007/s00029-024-00938-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a construction of oriented matroids from a triangulation of a product of two simplices. For this, we use the structure of such a triangulation in terms of polyhedral matching fields. The oriented matroid is composed of compatible chirotopes on the cells in a matroid subdivision of the hypersimplex, which might be of independent interest. In particular, we generalize this using the language of matroids over hyperfields, which gives a new approach to construct matroids over hyperfields. A recurring theme in our work is that various tropical constructions can be extended beyond tropicalization with new formulations and proof methods.</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00938-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00938-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从两个简约积的三角剖分引入了定向矩阵的构造。为此,我们使用了多面体匹配场的三角剖分结构。定向矩阵是由超复数矩阵细分中单元上的相容 chirotopes 组成的,这可能是人们感兴趣的独立问题。特别是,我们使用超场上的矩阵语言对其进行了概括,从而为构造超场上的矩阵提供了一种新方法。我们工作中反复出现的一个主题是,各种热带构造可以通过新的表述和证明方法扩展到热带化之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oriented matroids from triangulations of products of simplices

Oriented matroids from triangulations of products of simplices

We introduce a construction of oriented matroids from a triangulation of a product of two simplices. For this, we use the structure of such a triangulation in terms of polyhedral matching fields. The oriented matroid is composed of compatible chirotopes on the cells in a matroid subdivision of the hypersimplex, which might be of independent interest. In particular, we generalize this using the language of matroids over hyperfields, which gives a new approach to construct matroids over hyperfields. A recurring theme in our work is that various tropical constructions can be extended beyond tropicalization with new formulations and proof methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信