Zhuang Peng, Yang Gao, Xinrui Zhang, Boyan Zhang, Bingxin Yan, Bo Su, Hailin Cui, Cunlin Zhang
{"title":"基于微流控芯片的石墨烯量子点的太赫兹光谱特性研究","authors":"Zhuang Peng, Yang Gao, Xinrui Zhang, Boyan Zhang, Bingxin Yan, Bo Su, Hailin Cui, Cunlin Zhang","doi":"10.1155/2024/5096965","DOIUrl":null,"url":null,"abstract":"Graphene quantum dots are quasi-zero-dimensional nanomaterials with unique physical and chemical properties. This study utilized a terahertz (THz) time-domain spectroscopy system to analyze the absorption characteristics of THz-waves by graphene quantum dots at different concentrations. Additionally, we applied electric fields and magnetic field to explore the THz-wave absorption properties of graphene quantum dots in greater detail. The results indicate that the THz absorbance of graphene quantum dots is positively correlated with sample concentration and applied electric field strength. However, it is negatively correlated with the intensity of the applied magnetic field. This work combines THz technology and microfluidic devices to propose a viable methodology for conducting in-depth study on graphene quantum dots.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Terahertz Spectroscopy Properties of Graphene Quantum Dots Based on Microfluidic Chip\",\"authors\":\"Zhuang Peng, Yang Gao, Xinrui Zhang, Boyan Zhang, Bingxin Yan, Bo Su, Hailin Cui, Cunlin Zhang\",\"doi\":\"10.1155/2024/5096965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene quantum dots are quasi-zero-dimensional nanomaterials with unique physical and chemical properties. This study utilized a terahertz (THz) time-domain spectroscopy system to analyze the absorption characteristics of THz-waves by graphene quantum dots at different concentrations. Additionally, we applied electric fields and magnetic field to explore the THz-wave absorption properties of graphene quantum dots in greater detail. The results indicate that the THz absorbance of graphene quantum dots is positively correlated with sample concentration and applied electric field strength. However, it is negatively correlated with the intensity of the applied magnetic field. This work combines THz technology and microfluidic devices to propose a viable methodology for conducting in-depth study on graphene quantum dots.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5096965\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2024/5096965","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Study on the Terahertz Spectroscopy Properties of Graphene Quantum Dots Based on Microfluidic Chip
Graphene quantum dots are quasi-zero-dimensional nanomaterials with unique physical and chemical properties. This study utilized a terahertz (THz) time-domain spectroscopy system to analyze the absorption characteristics of THz-waves by graphene quantum dots at different concentrations. Additionally, we applied electric fields and magnetic field to explore the THz-wave absorption properties of graphene quantum dots in greater detail. The results indicate that the THz absorbance of graphene quantum dots is positively correlated with sample concentration and applied electric field strength. However, it is negatively correlated with the intensity of the applied magnetic field. This work combines THz technology and microfluidic devices to propose a viable methodology for conducting in-depth study on graphene quantum dots.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.