{"title":"来自塞伯格-维滕理论的结协和不变式和 4-manifolds中的切片属界限","authors":"David Baraglia","doi":"10.1142/s0129167x24500320","DOIUrl":null,"url":null,"abstract":"<p>We construct a new family of knot concordance invariants <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>q</mi><mo stretchy=\"false\">)</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span> is a prime number. Our invariants are obtained from the equivariant Seiberg–Witten–Floer cohomology, constructed by the author and Hekmati, applied to the degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span> cyclic cover of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> branched over <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span>. In the case <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi><mo>=</mo><mn>2</mn></math></span><span></span>, our invariant <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math></span><span></span> shares many similarities with the knot Floer homology invariant <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ν</mi></mrow><mrow><mo stretchy=\"false\">+</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math></span><span></span> defined by Hom and Wu. Our invariants <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>q</mi><mo stretchy=\"false\">)</mo></mrow></msup><mo stretchy=\"false\">(</mo><mi>K</mi><mo stretchy=\"false\">)</mo></math></span><span></span> give lower bounds on the genus of any smooth, properly embedded, homologically trivial surface bounding <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span> in a definite <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn></math></span><span></span>-manifold with boundary <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"127 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knot concordance invariants from Seiberg–Witten theory and slice genus bounds in 4-manifolds\",\"authors\":\"David Baraglia\",\"doi\":\"10.1142/s0129167x24500320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a new family of knot concordance invariants <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mi>q</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span> is a prime number. Our invariants are obtained from the equivariant Seiberg–Witten–Floer cohomology, constructed by the author and Hekmati, applied to the degree <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span> cyclic cover of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> branched over <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span>. In the case <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi><mo>=</mo><mn>2</mn></math></span><span></span>, our invariant <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> shares many similarities with the knot Floer homology invariant <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ν</mi></mrow><mrow><mo stretchy=\\\"false\\\">+</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> defined by Hom and Wu. Our invariants <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>𝜃</mi></mrow><mrow><mo stretchy=\\\"false\\\">(</mo><mi>q</mi><mo stretchy=\\\"false\\\">)</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> give lower bounds on the genus of any smooth, properly embedded, homologically trivial surface bounding <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span> in a definite <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>4</mn></math></span><span></span>-manifold with boundary <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>.</p>\",\"PeriodicalId\":54951,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500320\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24500320","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们构建了一个新的结协和不变式𝜃(q)(K)族,其中 q 是素数。在 q=2 的情况下,我们的不变式𝜃(2)(K) 与 Hom 和 Wu 定义的结 Floer 同调不变式 ν+(K) 有许多相似之处。我们的不变式𝜃(q)(K)给出了在边界为 S3 的定 4-manifold中与 K 相界的任何光滑、适当嵌入、同源琐碎曲面的属的下限。
Knot concordance invariants from Seiberg–Witten theory and slice genus bounds in 4-manifolds
We construct a new family of knot concordance invariants , where is a prime number. Our invariants are obtained from the equivariant Seiberg–Witten–Floer cohomology, constructed by the author and Hekmati, applied to the degree cyclic cover of branched over . In the case , our invariant shares many similarities with the knot Floer homology invariant defined by Hom and Wu. Our invariants give lower bounds on the genus of any smooth, properly embedded, homologically trivial surface bounding in a definite -manifold with boundary .
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.