阳极 CoOx-TiO2 纳米复合材料的合成及其可见光活性

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Karolina Syrek*, Magdalena Gurgul, Marcin Pisarek, Karolina Chrabąszcz, Kamilla Malek and Grzegorz D. Sulka, 
{"title":"阳极 CoOx-TiO2 纳米复合材料的合成及其可见光活性","authors":"Karolina Syrek*,&nbsp;Magdalena Gurgul,&nbsp;Marcin Pisarek,&nbsp;Karolina Chrabąszcz,&nbsp;Kamilla Malek and Grzegorz D. Sulka,&nbsp;","doi":"10.1021/acs.jpcc.4c00142","DOIUrl":null,"url":null,"abstract":"<p >Photoelectrochemical water splitting is considered one of the most promising methods for generating clean energy. Band gap engineering based on introducing transition metal oxides into the crystalline network of stable nanostructured semiconductors (e.g., TiO<sub>2</sub>) is of great interest. In the present work, nanotubular TiO<sub>2</sub> was synthesized via anodization followed by wet impregnation with a cobalt acetate solution (2−10 impregnation cycles) to obtain a heterojunction based on CoO<sub><i>x</i></sub>-modified TiO<sub>2</sub> upon annealing. To gather information connected to the material morphology, composition, crystallinity, optical, semiconducting, and photoelectrochemical properties, a variety of techniques were used, for example, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), ultraviolet−visible diffuse reflectance spectroscopy (UV−Vis DRS), Mott−Schottky analysis, and finally photoelectrochemical tests. Deposition of CoO<sub><i>x</i></sub> onto TiO<sub>2</sub> resulted in a reduction of the optical band gap (from 3.21 to 2.38 eV), which led to a significant improvement of the studied materials’ photoresponse in the visible range (the wavelength range in which the material is active has been extended to 600 nm).</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"128 18","pages":"7679–7689"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c00142","citationCount":"0","resultStr":"{\"title\":\"Synthesis and the Visible Light Activity of Anodic CoOx-TiO2 Nanocomposites\",\"authors\":\"Karolina Syrek*,&nbsp;Magdalena Gurgul,&nbsp;Marcin Pisarek,&nbsp;Karolina Chrabąszcz,&nbsp;Kamilla Malek and Grzegorz D. Sulka,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photoelectrochemical water splitting is considered one of the most promising methods for generating clean energy. Band gap engineering based on introducing transition metal oxides into the crystalline network of stable nanostructured semiconductors (e.g., TiO<sub>2</sub>) is of great interest. In the present work, nanotubular TiO<sub>2</sub> was synthesized via anodization followed by wet impregnation with a cobalt acetate solution (2−10 impregnation cycles) to obtain a heterojunction based on CoO<sub><i>x</i></sub>-modified TiO<sub>2</sub> upon annealing. To gather information connected to the material morphology, composition, crystallinity, optical, semiconducting, and photoelectrochemical properties, a variety of techniques were used, for example, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), ultraviolet−visible diffuse reflectance spectroscopy (UV−Vis DRS), Mott−Schottky analysis, and finally photoelectrochemical tests. Deposition of CoO<sub><i>x</i></sub> onto TiO<sub>2</sub> resulted in a reduction of the optical band gap (from 3.21 to 2.38 eV), which led to a significant improvement of the studied materials’ photoresponse in the visible range (the wavelength range in which the material is active has been extended to 600 nm).</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"128 18\",\"pages\":\"7679–7689\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jpcc.4c00142\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00142\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00142","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光电化学水分离被认为是产生清洁能源的最有前途的方法之一。基于将过渡金属氧化物引入稳定的纳米结构半导体(如 TiO2)的结晶网络的带隙工程备受关注。在本研究中,通过阳极氧化法合成了纳米管状二氧化钛,然后用醋酸钴溶液进行湿浸渍(2-10 次浸渍循环),在退火后获得了基于 CoOx 改性二氧化钛的异质结。为了收集与材料形态、组成、结晶度、光学、半导体和光电化学特性有关的信息,使用了多种技术,例如扫描电子显微镜(SEM)/能量色散光谱(EDS)、X 射线衍射 (XRD)、X 射线光电子能谱 (XPS)、拉曼光谱 (RS)、紫外-可见漫反射光谱 (UV-Vis DRS)、莫特-肖特基分析,以及最后的光电化学测试。在二氧化钛上沉积 CoOx 导致光带隙减小(从 3.21 eV 减小到 2.38 eV),从而显著改善了所研究材料在可见光范围内的光响应(材料的活性波长范围扩展到 600 nm)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and the Visible Light Activity of Anodic CoOx-TiO2 Nanocomposites

Synthesis and the Visible Light Activity of Anodic CoOx-TiO2 Nanocomposites

Synthesis and the Visible Light Activity of Anodic CoOx-TiO2 Nanocomposites

Photoelectrochemical water splitting is considered one of the most promising methods for generating clean energy. Band gap engineering based on introducing transition metal oxides into the crystalline network of stable nanostructured semiconductors (e.g., TiO2) is of great interest. In the present work, nanotubular TiO2 was synthesized via anodization followed by wet impregnation with a cobalt acetate solution (2−10 impregnation cycles) to obtain a heterojunction based on CoOx-modified TiO2 upon annealing. To gather information connected to the material morphology, composition, crystallinity, optical, semiconducting, and photoelectrochemical properties, a variety of techniques were used, for example, scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), ultraviolet−visible diffuse reflectance spectroscopy (UV−Vis DRS), Mott−Schottky analysis, and finally photoelectrochemical tests. Deposition of CoOx onto TiO2 resulted in a reduction of the optical band gap (from 3.21 to 2.38 eV), which led to a significant improvement of the studied materials’ photoresponse in the visible range (the wavelength range in which the material is active has been extended to 600 nm).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信