{"title":"曼特尔的主题彩虹变奏曲:加莱填色模板的极值问题","authors":"Victor Falgas-Ravry, Klas Markström, Eero Räty","doi":"10.1007/s00493-024-00102-6","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\textbf{G}:=(G_1, G_2, G_3)\\)</span> be a triple of graphs on the same vertex set <i>V</i> of size <i>n</i>. A rainbow triangle in <span>\\(\\textbf{G}\\)</span> is a triple of edges <span>\\((e_1, e_2, e_3)\\)</span> with <span>\\(e_i\\in G_i\\)</span> for each <i>i</i> and <span>\\(\\{e_1, e_2, e_3\\}\\)</span> forming a triangle in <i>V</i>. The triples <span>\\(\\textbf{G}\\)</span> not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities <span>\\((\\alpha _1, \\alpha _2, \\alpha _3)\\)</span> such that if <span>\\(\\vert E(G_i)\\vert > \\alpha _i n^2\\)</span> for each <i>i</i> and <i>n</i> is sufficiently large, then <span>\\(\\textbf{G}\\)</span> must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Variations on a Theme by Mantel: Extremal Problems for Gallai Colouring Templates\",\"authors\":\"Victor Falgas-Ravry, Klas Markström, Eero Räty\",\"doi\":\"10.1007/s00493-024-00102-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\textbf{G}:=(G_1, G_2, G_3)\\\\)</span> be a triple of graphs on the same vertex set <i>V</i> of size <i>n</i>. A rainbow triangle in <span>\\\\(\\\\textbf{G}\\\\)</span> is a triple of edges <span>\\\\((e_1, e_2, e_3)\\\\)</span> with <span>\\\\(e_i\\\\in G_i\\\\)</span> for each <i>i</i> and <span>\\\\(\\\\{e_1, e_2, e_3\\\\}\\\\)</span> forming a triangle in <i>V</i>. The triples <span>\\\\(\\\\textbf{G}\\\\)</span> not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities <span>\\\\((\\\\alpha _1, \\\\alpha _2, \\\\alpha _3)\\\\)</span> such that if <span>\\\\(\\\\vert E(G_i)\\\\vert > \\\\alpha _i n^2\\\\)</span> for each <i>i</i> and <i>n</i> is sufficiently large, then <span>\\\\(\\\\textbf{G}\\\\)</span> must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00102-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00102-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \textbf{G}:=(G_1, G_2, G_3)\ 是大小为 n 的同一顶点集 V 上的三重图。在 \(textbf{G}\) 中的彩虹三角形是边 \((e_1,e_2,e_3)\)的三重,每个 i 都有\(e_i\in G_i\),并且 \(\{e_1,e_2,e_3\}\)在 V 中形成了一个三角形。不包含彩虹三角形的三元组 \(\textbf{G}\)也被称为伽莱着色模板,是极值组合学中被广泛研究的一类对象。在本研究中,我们完全确定了边缘密度的集合 \((\alpha _1, \alpha _2, \alpha _3)\) ,如果 \(\vert E(G_i)\vert > \alpha _i n^2\) 对于每个 i 和 n 都足够大,那么 \(\textbf{G}\) 必须包含彩虹三角形。这解决了阿哈罗尼、德沃斯、德拉马扎、蒙特亚诺和萨马尔提出的一个问题,推广了之前关于极伽来着色模板的几个结果,并证明了弗兰克尔、邱里、何、吕、萨利亚、汤普金斯、瓦尔加和朱最近的一个猜想。
Rainbow Variations on a Theme by Mantel: Extremal Problems for Gallai Colouring Templates
Let \(\textbf{G}:=(G_1, G_2, G_3)\) be a triple of graphs on the same vertex set V of size n. A rainbow triangle in \(\textbf{G}\) is a triple of edges \((e_1, e_2, e_3)\) with \(e_i\in G_i\) for each i and \(\{e_1, e_2, e_3\}\) forming a triangle in V. The triples \(\textbf{G}\) not containing rainbow triangles, also known as Gallai colouring templates, are a widely studied class of objects in extremal combinatorics. In the present work, we fully determine the set of edge densities \((\alpha _1, \alpha _2, \alpha _3)\) such that if \(\vert E(G_i)\vert > \alpha _i n^2\) for each i and n is sufficiently large, then \(\textbf{G}\) must contain a rainbow triangle. This resolves a problem raised by Aharoni, DeVos, de la Maza, Montejanos and Šámal, generalises several previous results on extremal Gallai colouring templates, and proves a recent conjecture of Frankl, Győri, He, Lv, Salia, Tompkins, Varga and Zhu.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.