{"title":"低温电子显微镜试样中的石墨烯优化","authors":"Nan Liu , Hong-Wei Wang","doi":"10.1016/j.sbi.2024.102823","DOIUrl":null,"url":null,"abstract":"<div><p>Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"86 ","pages":"Article 102823"},"PeriodicalIF":6.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000502/pdfft?md5=7c99eb7821773320986464ac6dfb0a1b&pid=1-s2.0-S0959440X24000502-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene in cryo-EM specimen optimization\",\"authors\":\"Nan Liu , Hong-Wei Wang\",\"doi\":\"10.1016/j.sbi.2024.102823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"86 \",\"pages\":\"Article 102823\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000502/pdfft?md5=7c99eb7821773320986464ac6dfb0a1b&pid=1-s2.0-S0959440X24000502-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000502\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000502","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation