在三阴性乳腺癌小鼠模型中使用 68Ga 标记的 pH(低)插入肽样肽 YJL-4 进行小动物 PET 成像

IF 4.4 Q1 CHEMISTRY, INORGANIC & NUCLEAR
YueHua Chen, ShuangShuang Song, YanQin Sun, FengYu Wu, GuangJie Yang, ZhenGuang Wang, MingMing Yu
{"title":"在三阴性乳腺癌小鼠模型中使用 68Ga 标记的 pH(低)插入肽样肽 YJL-4 进行小动物 PET 成像","authors":"YueHua Chen,&nbsp;ShuangShuang Song,&nbsp;YanQin Sun,&nbsp;FengYu Wu,&nbsp;GuangJie Yang,&nbsp;ZhenGuang Wang,&nbsp;MingMing Yu","doi":"10.1186/s41181-024-00267-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The aim of this study was to prepare a novel <sup>68</sup>Ga-labeled pH (low) insertion peptide (pHLIP)-like peptide, YJL-4, and determine its value for the early diagnosis of triple-negative breast cancer (TNBC) via in vivo imaging of tumor-bearing nude mice. The novel peptide YJL-4 was designed using a template-assisted method and synthesized by solid-phase peptide synthesis. After modification with the chelator 1,4,7‑triazacyclononane-N,N′,N″-triacetic acid (NOTA), the peptide was labeled with <sup>68</sup>Ga. Then, the biodistribution of <sup>68</sup>Ga-YJL-4 in tumor-bearing nude mice was investigated, and the mice were imaged by small animal positron emission tomography (PET).</p><h3>Results</h3><p>The radiochemical yield and radiochemical purity of <sup>68</sup>Ga-YJL-4 were 89.5 ± 0.16% and 97.95 ± 0.06%, respectively. The biodistribution of <sup>68</sup>Ga-YJL-4 in tumors (5.94 ± 1.27% ID/g, 6.72 ± 1.69% ID/g and 4.54 ± 0.58% ID/g at 1, 2 and 4 h after injection, respectively) was significantly greater than that of the control peptide in tumors at the corresponding time points (<i>P</i> &lt; 0.01). Of the measured off-target organs, <sup>68</sup>Ga-YJL-4 was highly distributed in the liver and blood. The small animal PET imaging results were consistent with the biodistribution results. The tumors were visualized by PET at 2 and 4 h after the injection of <sup>68</sup>Ga-YJL-4. No tumors were observed in the control group.</p><h3>Conclusions</h3><p>The novel pHLIP family peptide YJL-4 can adopt an <i>α-</i>helical structure for easy insertion into the cell membrane in an acidic environment. <sup>68</sup>Ga-YJL-4 was produced in high radiochemical yield with good stability and can target TNBC tissue. Moreover, the strong concentration of radioactive <sup>68</sup>Ga-YJL-4 in the abdomen does not hinder the imaging of early TNBC.</p></div>","PeriodicalId":534,"journal":{"name":"EJNMMI Radiopharmacy and Chemistry","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00267-x","citationCount":"0","resultStr":"{\"title\":\"Small animal PET imaging with the 68Ga-labeled pH (low) insertion peptide-like peptide YJL-4 in a triple-negative breast cancer mouse model\",\"authors\":\"YueHua Chen,&nbsp;ShuangShuang Song,&nbsp;YanQin Sun,&nbsp;FengYu Wu,&nbsp;GuangJie Yang,&nbsp;ZhenGuang Wang,&nbsp;MingMing Yu\",\"doi\":\"10.1186/s41181-024-00267-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The aim of this study was to prepare a novel <sup>68</sup>Ga-labeled pH (low) insertion peptide (pHLIP)-like peptide, YJL-4, and determine its value for the early diagnosis of triple-negative breast cancer (TNBC) via in vivo imaging of tumor-bearing nude mice. The novel peptide YJL-4 was designed using a template-assisted method and synthesized by solid-phase peptide synthesis. After modification with the chelator 1,4,7‑triazacyclononane-N,N′,N″-triacetic acid (NOTA), the peptide was labeled with <sup>68</sup>Ga. Then, the biodistribution of <sup>68</sup>Ga-YJL-4 in tumor-bearing nude mice was investigated, and the mice were imaged by small animal positron emission tomography (PET).</p><h3>Results</h3><p>The radiochemical yield and radiochemical purity of <sup>68</sup>Ga-YJL-4 were 89.5 ± 0.16% and 97.95 ± 0.06%, respectively. The biodistribution of <sup>68</sup>Ga-YJL-4 in tumors (5.94 ± 1.27% ID/g, 6.72 ± 1.69% ID/g and 4.54 ± 0.58% ID/g at 1, 2 and 4 h after injection, respectively) was significantly greater than that of the control peptide in tumors at the corresponding time points (<i>P</i> &lt; 0.01). Of the measured off-target organs, <sup>68</sup>Ga-YJL-4 was highly distributed in the liver and blood. The small animal PET imaging results were consistent with the biodistribution results. The tumors were visualized by PET at 2 and 4 h after the injection of <sup>68</sup>Ga-YJL-4. No tumors were observed in the control group.</p><h3>Conclusions</h3><p>The novel pHLIP family peptide YJL-4 can adopt an <i>α-</i>helical structure for easy insertion into the cell membrane in an acidic environment. <sup>68</sup>Ga-YJL-4 was produced in high radiochemical yield with good stability and can target TNBC tissue. Moreover, the strong concentration of radioactive <sup>68</sup>Ga-YJL-4 in the abdomen does not hinder the imaging of early TNBC.</p></div>\",\"PeriodicalId\":534,\"journal\":{\"name\":\"EJNMMI Radiopharmacy and Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ejnmmipharmchem.springeropen.com/counter/pdf/10.1186/s41181-024-00267-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Radiopharmacy and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41181-024-00267-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Radiopharmacy and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s41181-024-00267-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

背景本研究旨在制备一种新型的68Ga标记pH(低)插入肽(pHLIP)样肽YJL-4,并通过对肿瘤裸鼠的体内成像确定其在三阴性乳腺癌(TNBC)早期诊断中的价值。新型多肽 YJL-4 采用模板辅助法设计,并通过固相多肽合成法合成。用螯合剂1,4,7-三氮杂环壬烷-N,N′,N″-三乙酸(NOTA)修饰后,该肽被68Ga标记。结果 68Ga-YJL-4 的放射化学收率和放射化学纯度分别为 89.5 ± 0.16% 和 97.95 ± 0.06%。68Ga-YJL-4在肿瘤中的生物分布(注射后1、2和4 h分别为5.94 ± 1.27% ID/g、6.72 ± 1.69% ID/g和4.54 ± 0.58% ID/g)显著高于相应时间点对照肽在肿瘤中的生物分布(P < 0.01)。在测得的非靶器官中,68Ga-YJL-4在肝脏和血液中分布较多。小动物 PET 成像结果与生物分布结果一致。注射68Ga-YJL-4后2小时和4小时,PET可观察到肿瘤。结论新型pHLIP家族多肽YJL-4可采用α-螺旋结构,在酸性环境中易于插入细胞膜。68Ga-YJL-4的放射化学收率高,稳定性好,可靶向TNBC组织。此外,68Ga-YJL-4在腹部的放射性浓度很高,不会妨碍早期TNBC的成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small animal PET imaging with the 68Ga-labeled pH (low) insertion peptide-like peptide YJL-4 in a triple-negative breast cancer mouse model

Background

The aim of this study was to prepare a novel 68Ga-labeled pH (low) insertion peptide (pHLIP)-like peptide, YJL-4, and determine its value for the early diagnosis of triple-negative breast cancer (TNBC) via in vivo imaging of tumor-bearing nude mice. The novel peptide YJL-4 was designed using a template-assisted method and synthesized by solid-phase peptide synthesis. After modification with the chelator 1,4,7‑triazacyclononane-N,N′,N″-triacetic acid (NOTA), the peptide was labeled with 68Ga. Then, the biodistribution of 68Ga-YJL-4 in tumor-bearing nude mice was investigated, and the mice were imaged by small animal positron emission tomography (PET).

Results

The radiochemical yield and radiochemical purity of 68Ga-YJL-4 were 89.5 ± 0.16% and 97.95 ± 0.06%, respectively. The biodistribution of 68Ga-YJL-4 in tumors (5.94 ± 1.27% ID/g, 6.72 ± 1.69% ID/g and 4.54 ± 0.58% ID/g at 1, 2 and 4 h after injection, respectively) was significantly greater than that of the control peptide in tumors at the corresponding time points (P < 0.01). Of the measured off-target organs, 68Ga-YJL-4 was highly distributed in the liver and blood. The small animal PET imaging results were consistent with the biodistribution results. The tumors were visualized by PET at 2 and 4 h after the injection of 68Ga-YJL-4. No tumors were observed in the control group.

Conclusions

The novel pHLIP family peptide YJL-4 can adopt an α-helical structure for easy insertion into the cell membrane in an acidic environment. 68Ga-YJL-4 was produced in high radiochemical yield with good stability and can target TNBC tissue. Moreover, the strong concentration of radioactive 68Ga-YJL-4 in the abdomen does not hinder the imaging of early TNBC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
8.70%
发文量
30
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信