Yifan Yang , Mingquan Lin , Han Zhao , Yifan Peng , Furong Huang , Zhiyong Lu
{"title":"解决生物医学中人工智能公平性和偏见的最新方法概览","authors":"Yifan Yang , Mingquan Lin , Han Zhao , Yifan Peng , Furong Huang , Zhiyong Lu","doi":"10.1016/j.jbi.2024.104646","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods, such as data perturbation and adversarial learning, that have been applied in the biomedical domain to address bias.</p></div><div><h3>Methods</h3><p>We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.</p></div><div><h3>Results</h3><p>The bias of AIs in biomedicine can originate from multiple sources such as insufficient data, sampling bias and the use of health-irrelevant features or race-adjusted algorithms. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic. Distributional methods include data augmentation, data perturbation, data reweighting methods, and federated learning. Algorithmic approaches include unsupervised representation learning, adversarial learning, disentangled representation learning, loss-based methods and causality-based methods.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"154 ","pages":"Article 104646"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1532046424000649/pdfft?md5=463472b5f244a8f4a4f49707c8ee30a5&pid=1-s2.0-S1532046424000649-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A survey of recent methods for addressing AI fairness and bias in biomedicine\",\"authors\":\"Yifan Yang , Mingquan Lin , Han Zhao , Yifan Peng , Furong Huang , Zhiyong Lu\",\"doi\":\"10.1016/j.jbi.2024.104646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods, such as data perturbation and adversarial learning, that have been applied in the biomedical domain to address bias.</p></div><div><h3>Methods</h3><p>We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.</p></div><div><h3>Results</h3><p>The bias of AIs in biomedicine can originate from multiple sources such as insufficient data, sampling bias and the use of health-irrelevant features or race-adjusted algorithms. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic. Distributional methods include data augmentation, data perturbation, data reweighting methods, and federated learning. Algorithmic approaches include unsupervised representation learning, adversarial learning, disentangled representation learning, loss-based methods and causality-based methods.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"154 \",\"pages\":\"Article 104646\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1532046424000649/pdfft?md5=463472b5f244a8f4a4f49707c8ee30a5&pid=1-s2.0-S1532046424000649-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424000649\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424000649","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A survey of recent methods for addressing AI fairness and bias in biomedicine
Objectives
Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods, such as data perturbation and adversarial learning, that have been applied in the biomedical domain to address bias.
Methods
We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness.
Results
The bias of AIs in biomedicine can originate from multiple sources such as insufficient data, sampling bias and the use of health-irrelevant features or race-adjusted algorithms. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic. Distributional methods include data augmentation, data perturbation, data reweighting methods, and federated learning. Algorithmic approaches include unsupervised representation learning, adversarial learning, disentangled representation learning, loss-based methods and causality-based methods.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.