欧几里得曲线空间上的弹性度量:理论与算法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Martin Bauer, Nicolas Charon, Eric Klassen, Sebastian Kurtek, Tom Needham, Thomas Pierron
{"title":"欧几里得曲线空间上的弹性度量:理论与算法","authors":"Martin Bauer, Nicolas Charon, Eric Klassen, Sebastian Kurtek, Tom Needham, Thomas Pierron","doi":"10.1007/s00332-024-10035-5","DOIUrl":null,"url":null,"abstract":"<p>A main goal in the field of statistical shape analysis is to define computable and informative metrics on spaces of immersed manifolds, such as the space of curves in a Euclidean space. The approach taken in the elastic shape analysis framework is to define such a metric by starting with a reparametrization-invariant Riemannian metric on the space of parametrized shapes and inducing a metric on the quotient by the group of diffeomorphisms. This quotient metric is computed, in practice, by finding a registration of two shapes over the diffeomorphism group. For spaces of Euclidean curves, the initial Riemannian metric is frequently chosen from a two-parameter family of Sobolev metrics, called elastic metrics. Elastic metrics are especially convenient because, for several parameter choices, they are known to be locally isometric to Riemannian metrics for which one is able to solve the geodesic boundary problem explicitly—well-known examples of these local isometries include the complex square root transform of Younes, Michor, Mumford and Shah and square root velocity (SRV) transform of Srivastava, Klassen, Joshi and Jermyn. In this paper, we show that the SRV transform extends to elastic metrics for all choices of parameters, for curves in any dimension, thereby fully generalizing the work of many authors over the past two decades. We give a unified treatment of the elastic metrics: we extend results of Trouvé and Younes, Bruveris as well as Lahiri, Robinson and Klassen on the existence of solutions to the registration problem, we develop algorithms for computing distances and geodesics, and we apply these algorithms to metric learning problems, where we learn optimal elastic metric parameters for statistical shape analysis tasks.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elastic Metrics on Spaces of Euclidean Curves: Theory and Algorithms\",\"authors\":\"Martin Bauer, Nicolas Charon, Eric Klassen, Sebastian Kurtek, Tom Needham, Thomas Pierron\",\"doi\":\"10.1007/s00332-024-10035-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A main goal in the field of statistical shape analysis is to define computable and informative metrics on spaces of immersed manifolds, such as the space of curves in a Euclidean space. The approach taken in the elastic shape analysis framework is to define such a metric by starting with a reparametrization-invariant Riemannian metric on the space of parametrized shapes and inducing a metric on the quotient by the group of diffeomorphisms. This quotient metric is computed, in practice, by finding a registration of two shapes over the diffeomorphism group. For spaces of Euclidean curves, the initial Riemannian metric is frequently chosen from a two-parameter family of Sobolev metrics, called elastic metrics. Elastic metrics are especially convenient because, for several parameter choices, they are known to be locally isometric to Riemannian metrics for which one is able to solve the geodesic boundary problem explicitly—well-known examples of these local isometries include the complex square root transform of Younes, Michor, Mumford and Shah and square root velocity (SRV) transform of Srivastava, Klassen, Joshi and Jermyn. In this paper, we show that the SRV transform extends to elastic metrics for all choices of parameters, for curves in any dimension, thereby fully generalizing the work of many authors over the past two decades. We give a unified treatment of the elastic metrics: we extend results of Trouvé and Younes, Bruveris as well as Lahiri, Robinson and Klassen on the existence of solutions to the registration problem, we develop algorithms for computing distances and geodesics, and we apply these algorithms to metric learning problems, where we learn optimal elastic metric parameters for statistical shape analysis tasks.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10035-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10035-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

统计形状分析领域的一个主要目标是定义沉浸流形空间(如欧几里得空间中的曲线空间)上可计算且信息丰富的度量。弹性形状分析框架所采用的方法是从参数化形状空间上的重构不变黎曼度量开始,并通过差分形群在商上诱导出一个度量,从而定义这样一个度量。实际上,这种商度量是通过在差分群上找到两个形状的注册来计算的。对于欧几里得曲线空间,初始黎曼度量通常选自索博列夫度量的双参数系列,即弹性度量。弹性度量特别方便,因为对于若干参数选择,它们与黎曼度量局部等距,可以明确地求解大地边界问题--这些局部等距的著名例子包括 Younes、Michor、Mumford 和 Shah 的复平方根变换以及 Srivastava、Klassen、Joshi 和 Jermyn 的平方根速度(SRV)变换。在本文中,我们证明了对于任何维度的曲线,SRV 变换可以扩展到所有参数选择的弹性度量,从而完全概括了过去二十年中许多学者的工作。我们对弹性度量进行了统一处理:我们扩展了 Trouvé 和 Younes、Bruveris 以及 Lahiri、Robinson 和 Klassen 关于注册问题存在解的研究成果,开发了计算距离和大地线的算法,并将这些算法应用于度量学习问题,从而为统计形状分析任务学习最佳弹性度量参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elastic Metrics on Spaces of Euclidean Curves: Theory and Algorithms

Elastic Metrics on Spaces of Euclidean Curves: Theory and Algorithms

A main goal in the field of statistical shape analysis is to define computable and informative metrics on spaces of immersed manifolds, such as the space of curves in a Euclidean space. The approach taken in the elastic shape analysis framework is to define such a metric by starting with a reparametrization-invariant Riemannian metric on the space of parametrized shapes and inducing a metric on the quotient by the group of diffeomorphisms. This quotient metric is computed, in practice, by finding a registration of two shapes over the diffeomorphism group. For spaces of Euclidean curves, the initial Riemannian metric is frequently chosen from a two-parameter family of Sobolev metrics, called elastic metrics. Elastic metrics are especially convenient because, for several parameter choices, they are known to be locally isometric to Riemannian metrics for which one is able to solve the geodesic boundary problem explicitly—well-known examples of these local isometries include the complex square root transform of Younes, Michor, Mumford and Shah and square root velocity (SRV) transform of Srivastava, Klassen, Joshi and Jermyn. In this paper, we show that the SRV transform extends to elastic metrics for all choices of parameters, for curves in any dimension, thereby fully generalizing the work of many authors over the past two decades. We give a unified treatment of the elastic metrics: we extend results of Trouvé and Younes, Bruveris as well as Lahiri, Robinson and Klassen on the existence of solutions to the registration problem, we develop algorithms for computing distances and geodesics, and we apply these algorithms to metric learning problems, where we learn optimal elastic metric parameters for statistical shape analysis tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信