扭曲巴拿赫代数交叉积中的拓扑自由作用和理想

IF 1.3 3区 数学 Q1 MATHEMATICS
Krzysztof Bardadyn, Bartosz Kwaśniewski
{"title":"扭曲巴拿赫代数交叉积中的拓扑自由作用和理想","authors":"Krzysztof Bardadyn, Bartosz Kwaśniewski","doi":"10.1017/prm.2024.37","DOIUrl":null,"url":null,"abstract":"We generalize the influential <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C^*$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000374_inline1.png\"/> </jats:alternatives> </jats:inline-formula>-algebraic results of Kawamura–Tomiyama and Archbold–Spielberg for crossed products of discrete groups actions to the realm of Banach algebras and twisted actions. We prove that topological freeness is equivalent to the intersection property for all reduced twisted Banach algebra crossed products coming from subgroups, and in the untwisted case to a generalized intersection property for a full <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000374_inline2.png\"/> </jats:alternatives> </jats:inline-formula>-operator algebra crossed product for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p\\in [1,\\,\\infty ]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000374_inline3.png\"/> </jats:alternatives> </jats:inline-formula>. This gives efficient simplicity criteria for various Banach algebra crossed products. We also use it to identify the prime ideal space of some crossed products as the quasi-orbit space of the action. For amenable actions we prove that the full and reduced twisted <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000374_inline4.png\"/> </jats:alternatives> </jats:inline-formula>-operator algebras coincide.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"38 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topologically free actions and ideals in twisted Banach algebra crossed products\",\"authors\":\"Krzysztof Bardadyn, Bartosz Kwaśniewski\",\"doi\":\"10.1017/prm.2024.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the influential <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C^*$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000374_inline1.png\\\"/> </jats:alternatives> </jats:inline-formula>-algebraic results of Kawamura–Tomiyama and Archbold–Spielberg for crossed products of discrete groups actions to the realm of Banach algebras and twisted actions. We prove that topological freeness is equivalent to the intersection property for all reduced twisted Banach algebra crossed products coming from subgroups, and in the untwisted case to a generalized intersection property for a full <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000374_inline2.png\\\"/> </jats:alternatives> </jats:inline-formula>-operator algebra crossed product for any <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p\\\\in [1,\\\\,\\\\infty ]$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000374_inline3.png\\\"/> </jats:alternatives> </jats:inline-formula>. This gives efficient simplicity criteria for various Banach algebra crossed products. We also use it to identify the prime ideal space of some crossed products as the quasi-orbit space of the action. For amenable actions we prove that the full and reduced twisted <jats:inline-formula> <jats:alternatives> <jats:tex-math>$L^p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000374_inline4.png\\\"/> </jats:alternatives> </jats:inline-formula>-operator algebras coincide.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.37\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.37","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将川村-富山(Kawamura-Tomiyama)和阿奇博尔德-斯皮尔伯格(Archbold-Spielberg)对离散群作用交叉积的有影响力的 $C^*$ 代数结果推广到巴拿赫代数和扭曲作用领域。我们证明了拓扑自由性等同于所有来自子群的还原扭曲巴纳赫代数交叉积的交集性质,而在非扭曲情况下,等同于在 [1,\,\infty ]$ 中任意 $p\ 的全 $L^p$ 算子代数交叉积的广义交集性质。这为各种巴拿赫代数交叉积提供了有效的简单性标准。我们还用它把一些交叉积的素理想空间确定为作用的准轨道空间。对于可简化的作用,我们证明了完整的和简化的扭曲 $L^p$ -operator 放大系数是重合的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topologically free actions and ideals in twisted Banach algebra crossed products
We generalize the influential $C^*$ -algebraic results of Kawamura–Tomiyama and Archbold–Spielberg for crossed products of discrete groups actions to the realm of Banach algebras and twisted actions. We prove that topological freeness is equivalent to the intersection property for all reduced twisted Banach algebra crossed products coming from subgroups, and in the untwisted case to a generalized intersection property for a full $L^p$ -operator algebra crossed product for any $p\in [1,\,\infty ]$ . This gives efficient simplicity criteria for various Banach algebra crossed products. We also use it to identify the prime ideal space of some crossed products as the quasi-orbit space of the action. For amenable actions we prove that the full and reduced twisted $L^p$ -operator algebras coincide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信