单边接触问题的二次非连续 Galerkin 有限元方法

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Kamana Porwal, Tanvi Wadhawan
{"title":"单边接触问题的二次非连续 Galerkin 有限元方法","authors":"Kamana Porwal, Tanvi Wadhawan","doi":"10.1515/cmam-2023-0015","DOIUrl":null,"url":null,"abstract":"In this article, we employ discontinuous Galerkin methods for the finite element approximation of the frictionless unilateral contact problem using quadratic finite elements over simplicial triangulation. We first develop a posteriori error estimates in the energy norm wherein, the reliability and efficiency of the proposed a posteriori error estimator is addressed. The suitable construction of the discrete Lagrange multiplier <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>𝝀</m:mi> <m:mi>𝒉</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0015_eq_0416.png\" /> <jats:tex-math>{\\boldsymbol{\\lambda_{h}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and some intermediate operators play a key role in developing a posteriori error analysis. Further, we establish an optimal a priori error estimates under the appropriate regularity assumption on the exact solution <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>𝒖</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0015_eq_0479.png\" /> <jats:tex-math>{\\boldsymbol{u}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Numerical results presented on uniform and adaptive meshes illustrate and confirm the theoretical findings.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic Discontinuous Galerkin Finite Element Methods for the Unilateral Contact Problem\",\"authors\":\"Kamana Porwal, Tanvi Wadhawan\",\"doi\":\"10.1515/cmam-2023-0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we employ discontinuous Galerkin methods for the finite element approximation of the frictionless unilateral contact problem using quadratic finite elements over simplicial triangulation. We first develop a posteriori error estimates in the energy norm wherein, the reliability and efficiency of the proposed a posteriori error estimator is addressed. The suitable construction of the discrete Lagrange multiplier <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mi>𝝀</m:mi> <m:mi>𝒉</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0015_eq_0416.png\\\" /> <jats:tex-math>{\\\\boldsymbol{\\\\lambda_{h}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and some intermediate operators play a key role in developing a posteriori error analysis. Further, we establish an optimal a priori error estimates under the appropriate regularity assumption on the exact solution <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>𝒖</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0015_eq_0479.png\\\" /> <jats:tex-math>{\\\\boldsymbol{u}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Numerical results presented on uniform and adaptive meshes illustrate and confirm the theoretical findings.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们采用非连续伽勒金方法,利用二次有限元在简单三角形上对无摩擦单边接触问题进行有限元逼近。我们首先开发了能量规范中的后验误差估计,并在此基础上讨论了所提出的后验误差估计器的可靠性和效率。离散拉格朗日乘子 𝝀 𝒉 {\boldsymbol\{lambda_{h}}} 和一些中间算子的适当构造在后验误差分析中起着关键作用。此外,我们还在精确解 𝒖 {\boldsymbol{u}} 的适当正则性假设下建立了最优的先验误差估计。 .在均匀网格和自适应网格上给出的数值结果说明并证实了理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic Discontinuous Galerkin Finite Element Methods for the Unilateral Contact Problem
In this article, we employ discontinuous Galerkin methods for the finite element approximation of the frictionless unilateral contact problem using quadratic finite elements over simplicial triangulation. We first develop a posteriori error estimates in the energy norm wherein, the reliability and efficiency of the proposed a posteriori error estimator is addressed. The suitable construction of the discrete Lagrange multiplier 𝝀 𝒉 {\boldsymbol{\lambda_{h}}} and some intermediate operators play a key role in developing a posteriori error analysis. Further, we establish an optimal a priori error estimates under the appropriate regularity assumption on the exact solution 𝒖 {\boldsymbol{u}} . Numerical results presented on uniform and adaptive meshes illustrate and confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信