{"title":"通过 Donsker-Varadhan 表示进行深度数据密度估算","authors":"Seonho Park, Panos M. Pardalos","doi":"10.1007/s10472-024-09943-9","DOIUrl":null,"url":null,"abstract":"<p>Estimating the data density is one of the challenging problem topics in the deep learning society. In this paper, we present a simple yet effective methodology for estimating the data density using the Donsker-Varadhan variational lower bound on the KL divergence and the modeling based on the deep neural network. We demonstrate that the optimal critic function associated with the Donsker-Varadhan representation on the KL divergence between the data and the uniform distribution can estimate the data density. Also, we present the deep neural network-based modeling and its stochastic learning procedure. The experimental results and possible applications of the proposed method demonstrate that it is competitive with the previous methods for data density estimation and has a lot of possibilities for various applications.</p>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"19 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep data density estimation through Donsker-Varadhan representation\",\"authors\":\"Seonho Park, Panos M. Pardalos\",\"doi\":\"10.1007/s10472-024-09943-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estimating the data density is one of the challenging problem topics in the deep learning society. In this paper, we present a simple yet effective methodology for estimating the data density using the Donsker-Varadhan variational lower bound on the KL divergence and the modeling based on the deep neural network. We demonstrate that the optimal critic function associated with the Donsker-Varadhan representation on the KL divergence between the data and the uniform distribution can estimate the data density. Also, we present the deep neural network-based modeling and its stochastic learning procedure. The experimental results and possible applications of the proposed method demonstrate that it is competitive with the previous methods for data density estimation and has a lot of possibilities for various applications.</p>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10472-024-09943-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10472-024-09943-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep data density estimation through Donsker-Varadhan representation
Estimating the data density is one of the challenging problem topics in the deep learning society. In this paper, we present a simple yet effective methodology for estimating the data density using the Donsker-Varadhan variational lower bound on the KL divergence and the modeling based on the deep neural network. We demonstrate that the optimal critic function associated with the Donsker-Varadhan representation on the KL divergence between the data and the uniform distribution can estimate the data density. Also, we present the deep neural network-based modeling and its stochastic learning procedure. The experimental results and possible applications of the proposed method demonstrate that it is competitive with the previous methods for data density estimation and has a lot of possibilities for various applications.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.