Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang, Shiyue Li
{"title":"具有循环作用的多面体和有理曲线","authors":"Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang, Shiyue Li","doi":"10.1093/imrn/rnae069","DOIUrl":null,"url":null,"abstract":"We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimatroids and Rational Curves with Cyclic Action\",\"authors\":\"Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang, Shiyue Li\",\"doi\":\"10.1093/imrn/rnae069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\\\\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multimatroids and Rational Curves with Cyclic Action
We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.