具有循环作用的多面体和有理曲线

Pub Date : 2024-04-23 DOI:10.1093/imrn/rnae069
Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang, Shiyue Li
{"title":"具有循环作用的多面体和有理曲线","authors":"Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang, Shiyue Li","doi":"10.1093/imrn/rnae069","DOIUrl":null,"url":null,"abstract":"We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimatroids and Rational Curves with Cyclic Action\",\"authors\":\"Emily Clader, Chiara Damiolini, Christopher Eur, Daoji Huang, Shiyue Li\",\"doi\":\"10.1093/imrn/rnae069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\\\\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了多面体与具有循环作用的有理曲线模空间之间的联系。多面体是拓扑图理论中自然产生的矩阵和三角矩阵的广义化。曲线模空间的视角为研究多模提供了一个热带框架,概括了之前的$A$型永拓面体品种(洛塞夫-马宁模空间)与矩阵之间的联系,以及$B$型永拓面体品种与三角矩阵之间的联系。具体地说,我们把模空间的组合内锥等同于${\mathbb {R}}$ 多面体空间(多面体的广义),并引入了多面体的独立多顶复数,其体积与模空间上的交集数相一致。作为应用,我们给出了模空间上一类自然交集数的组合公式,并将其与多面体的独立性多顶复数的体积联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multimatroids and Rational Curves with Cyclic Action
We study the connection between multimatroids and moduli spaces of rational curves with cyclic action. Multimatroids are generalizations of matroids and delta-matroids that naturally arise in topological graph theory. The perspective of moduli of curves provides a tropical framework for studying multimatroids, generalizing the previous connection between type-$A$ permutohedral varieties (Losev–Manin moduli spaces) and matroids, and the connection between type-$B$ permutohedral varieties and delta-matroids. Specifically, we equate a combinatorial nef cone of the moduli space with the space of ${\mathbb {R}}$-multimatroids, a generalization of multimatroids, and we introduce the independence polytopal complex of a multimatroid, whose volume is identified with an intersection number on the moduli space. As an application, we give a combinatorial formula for a natural class of intersection numbers on the moduli space by relating to the volumes of independence polytopal complexes of multimatroids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信