弱依赖性下的稀疏惩罚性深度神经网络估计器

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-04-23 DOI:10.1007/s00184-024-00965-1
William Kengne, Modou Wade
{"title":"弱依赖性下的稀疏惩罚性深度神经网络估计器","authors":"William Kengne, Modou Wade","doi":"10.1007/s00184-024-00965-1","DOIUrl":null,"url":null,"abstract":"<p>We consider the nonparametric regression and the classification problems for <span>\\(\\psi \\)</span>-weakly dependent processes. This weak dependence structure is more general than conditions such as, mixing, association<span>\\(\\cdots \\)</span> A penalized estimation method for sparse deep neural networks is performed. In both nonparametric regression and binary classification problems, we establish oracle inequalities for the excess risk of the sparse-penalized deep neural networks estimators. Convergence rates of the excess risk of these estimators are also derived. The simulation results displayed show that, the proposed estimators can work well than the non penalized estimators, and that, there is a gain of using this estimator.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse-penalized deep neural networks estimator under weak dependence\",\"authors\":\"William Kengne, Modou Wade\",\"doi\":\"10.1007/s00184-024-00965-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the nonparametric regression and the classification problems for <span>\\\\(\\\\psi \\\\)</span>-weakly dependent processes. This weak dependence structure is more general than conditions such as, mixing, association<span>\\\\(\\\\cdots \\\\)</span> A penalized estimation method for sparse deep neural networks is performed. In both nonparametric regression and binary classification problems, we establish oracle inequalities for the excess risk of the sparse-penalized deep neural networks estimators. Convergence rates of the excess risk of these estimators are also derived. The simulation results displayed show that, the proposed estimators can work well than the non penalized estimators, and that, there is a gain of using this estimator.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00965-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00965-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了弱(\psi \)依赖过程的非参数回归和分类问题。这种弱依赖性结构比诸如混合、关联(\cdots \)等条件更为普遍,我们对稀疏深度神经网络进行了惩罚性估计方法。在非参数回归和二元分类问题中,我们建立了稀疏惩罚深度神经网络估计器超额风险的oracle不等式。我们还推导出了这些估计器的超额风险收敛率。显示的模拟结果表明,所提出的估计器比非惩罚估计器更有效,而且使用这种估计器会有收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sparse-penalized deep neural networks estimator under weak dependence

Sparse-penalized deep neural networks estimator under weak dependence

We consider the nonparametric regression and the classification problems for \(\psi \)-weakly dependent processes. This weak dependence structure is more general than conditions such as, mixing, association\(\cdots \) A penalized estimation method for sparse deep neural networks is performed. In both nonparametric regression and binary classification problems, we establish oracle inequalities for the excess risk of the sparse-penalized deep neural networks estimators. Convergence rates of the excess risk of these estimators are also derived. The simulation results displayed show that, the proposed estimators can work well than the non penalized estimators, and that, there is a gain of using this estimator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信