图逆半群全等网格的性质

IF 0.5 2区 数学 Q3 MATHEMATICS
Marina Anagnostopoulou-Merkouri, Zachary Mesyan, James D. Mitchell
{"title":"图逆半群全等网格的性质","authors":"Marina Anagnostopoulou-Merkouri, Zachary Mesyan, James D. Mitchell","doi":"10.1142/s0218196724500139","DOIUrl":null,"url":null,"abstract":"<p>From any directed graph <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span> one can construct the graph inverse semigroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, whose elements, roughly speaking, correspond to paths in <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. Wang and Luo showed that the congruence lattice <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>G</mi><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is upper-semimodular for every graph <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>, but can fail to be lower-semimodular for some <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. We provide a simple characterization of the graphs <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span> for which <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is lower-semimodular. We also describe those <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span> such that <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is atomistic, and characterize the minimal generating sets for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">(</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> when <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span> is finite and simple.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"15 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of congruence lattices of graph inverse semigroups\",\"authors\":\"Marina Anagnostopoulou-Merkouri, Zachary Mesyan, James D. Mitchell\",\"doi\":\"10.1142/s0218196724500139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>From any directed graph <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span> one can construct the graph inverse semigroup <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, whose elements, roughly speaking, correspond to paths in <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span>. Wang and Luo showed that the congruence lattice <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>G</mi><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is upper-semimodular for every graph <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span>, but can fail to be lower-semimodular for some <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span>. We provide a simple characterization of the graphs <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span> for which <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is lower-semimodular. We also describe those <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span> such that <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is atomistic, and characterize the minimal generating sets for <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">(</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> when <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span> is finite and simple.</p>\",\"PeriodicalId\":13756,\"journal\":{\"name\":\"International Journal of Algebra and Computation\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Algebra and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196724500139\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500139","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

王和罗(Wang and Luo)的研究表明,G(E) 的同余网格 L(G(E)) 对于每个图 E 都是上半模的,但对于某些图 E 可能不是下半模的。我们还描述了那些 L(G(E)) 原子化的 E,并描述了当 E 有限且简单时 L(G(E)) 的最小生成集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of congruence lattices of graph inverse semigroups

From any directed graph E one can construct the graph inverse semigroup G(E), whose elements, roughly speaking, correspond to paths in E. Wang and Luo showed that the congruence lattice L(G(E)) of G(E) is upper-semimodular for every graph E, but can fail to be lower-semimodular for some E. We provide a simple characterization of the graphs E for which L(G(E)) is lower-semimodular. We also describe those E such that L(G(E)) is atomistic, and characterize the minimal generating sets for L(G(E)) when E is finite and simple.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信