Anna E. Dudek, Bartosz Majewski, Antonio Napolitano
{"title":"一类频谱相关过程的频谱密度估计","authors":"Anna E. Dudek, Bartosz Majewski, Antonio Napolitano","doi":"10.1111/jtsa.12742","DOIUrl":null,"url":null,"abstract":"<p>We study the estimation problem of the spectral density function for harmonizable non-stationary processes. More precisely, we consider spectrally correlated processes whose spectral measure has the support contained in the union of unknown lines with possibly non-unit slopes. We propose the frequency-smoothed periodogram along the estimated support line as an estimator of the spectral density function. We show the mean-square consistency of the proposed estimator. Additionally, we discuss the estimation of the support line in a specific model with its applications in locating a moving source. Finally, we present simulations confirming the proven results.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 6","pages":"884-909"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Density Estimation for a Class of Spectrally Correlated Processes\",\"authors\":\"Anna E. Dudek, Bartosz Majewski, Antonio Napolitano\",\"doi\":\"10.1111/jtsa.12742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the estimation problem of the spectral density function for harmonizable non-stationary processes. More precisely, we consider spectrally correlated processes whose spectral measure has the support contained in the union of unknown lines with possibly non-unit slopes. We propose the frequency-smoothed periodogram along the estimated support line as an estimator of the spectral density function. We show the mean-square consistency of the proposed estimator. Additionally, we discuss the estimation of the support line in a specific model with its applications in locating a moving source. Finally, we present simulations confirming the proven results.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"45 6\",\"pages\":\"884-909\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12742\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12742","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Spectral Density Estimation for a Class of Spectrally Correlated Processes
We study the estimation problem of the spectral density function for harmonizable non-stationary processes. More precisely, we consider spectrally correlated processes whose spectral measure has the support contained in the union of unknown lines with possibly non-unit slopes. We propose the frequency-smoothed periodogram along the estimated support line as an estimator of the spectral density function. We show the mean-square consistency of the proposed estimator. Additionally, we discuss the estimation of the support line in a specific model with its applications in locating a moving source. Finally, we present simulations confirming the proven results.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.