Igor Araujo, Bryce Frederickson, Robert A. Krueger, Bernard Lidický, Tyrrell B. McAllister, Florian Pfender, Sam Spiro, Eric Nathan Stucky
{"title":"网格上的三角渗透","authors":"Igor Araujo, Bryce Frederickson, Robert A. Krueger, Bernard Lidický, Tyrrell B. McAllister, Florian Pfender, Sam Spiro, Eric Nathan Stucky","doi":"10.1007/s00454-024-00645-x","DOIUrl":null,"url":null,"abstract":"<p>We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set <span>\\(X \\subseteq {\\mathbb {Z}}^2\\)</span>, and then iteratively check whether there exists a triangle <span>\\(T \\subseteq {\\mathbb {R}}^2\\)</span> with its vertices in <span>\\({\\mathbb {Z}}^2\\)</span> such that <i>T</i> contains exactly four points of <span>\\({\\mathbb {Z}}^2\\)</span> and exactly three points of <i>X</i>. In this case, we add the missing lattice point of <i>T</i> to <i>X</i>, and we repeat until no such triangle exists. We study the limit sets <i>S</i>, the sets stable under this process, including determining their possible densities and some of their structure.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangle Percolation on the Grid\",\"authors\":\"Igor Araujo, Bryce Frederickson, Robert A. Krueger, Bernard Lidický, Tyrrell B. McAllister, Florian Pfender, Sam Spiro, Eric Nathan Stucky\",\"doi\":\"10.1007/s00454-024-00645-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set <span>\\\\(X \\\\subseteq {\\\\mathbb {Z}}^2\\\\)</span>, and then iteratively check whether there exists a triangle <span>\\\\(T \\\\subseteq {\\\\mathbb {R}}^2\\\\)</span> with its vertices in <span>\\\\({\\\\mathbb {Z}}^2\\\\)</span> such that <i>T</i> contains exactly four points of <span>\\\\({\\\\mathbb {Z}}^2\\\\)</span> and exactly three points of <i>X</i>. In this case, we add the missing lattice point of <i>T</i> to <i>X</i>, and we repeat until no such triangle exists. We study the limit sets <i>S</i>, the sets stable under this process, including determining their possible densities and some of their structure.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00645-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00645-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑了一个几何渗流过程,其部分动机来自 Hejda 和 Kala 的最新研究。具体来说,我们从一个初始集合(X)开始,然后迭代检查是否存在一个顶点在(X)中的三角形(T),使得 T 包含了(X)的四个点和三个点。在这种情况下,我们把 T 中缺失的网格点添加到 X 中,如此重复直到不存在这样的三角形为止。我们将研究极限集合 S,即在此过程中稳定的集合,包括确定它们可能的密度及其部分结构。
We consider a geometric percolation process partially motivated by recent work of Hejda and Kala. Specifically, we start with an initial set \(X \subseteq {\mathbb {Z}}^2\), and then iteratively check whether there exists a triangle \(T \subseteq {\mathbb {R}}^2\) with its vertices in \({\mathbb {Z}}^2\) such that T contains exactly four points of \({\mathbb {Z}}^2\) and exactly three points of X. In this case, we add the missing lattice point of T to X, and we repeat until no such triangle exists. We study the limit sets S, the sets stable under this process, including determining their possible densities and some of their structure.