{"title":"数据效率、降维与广义对称信息瓶颈","authors":"K. Michael Martini;Ilya Nemenman","doi":"10.1162/neco_a_01667","DOIUrl":null,"url":null,"abstract":"The symmetric information bottleneck (SIB), an extension of the more familiar information bottleneck, is a dimensionality-reduction technique that simultaneously compresses two random variables to preserve information between their compressed versions. We introduce the generalized symmetric information bottleneck (GSIB), which explores different functional forms of the cost of such simultaneous reduction. We then explore the data set size requirements of such simultaneous compression. We do this by deriving bounds and root-mean-squared estimates of statistical fluctuations of the involved loss functions. We show that in typical situations, the simultaneous GSIB compression requires qualitatively less data to achieve the same errors compared to compressing variables one at a time. We suggest that this is an example of a more general principle that simultaneous compression is more data efficient than independent compression of each of the input variables.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 7","pages":"1353-1379"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Efficiency, Dimensionality Reduction, and the Generalized Symmetric Information Bottleneck\",\"authors\":\"K. Michael Martini;Ilya Nemenman\",\"doi\":\"10.1162/neco_a_01667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The symmetric information bottleneck (SIB), an extension of the more familiar information bottleneck, is a dimensionality-reduction technique that simultaneously compresses two random variables to preserve information between their compressed versions. We introduce the generalized symmetric information bottleneck (GSIB), which explores different functional forms of the cost of such simultaneous reduction. We then explore the data set size requirements of such simultaneous compression. We do this by deriving bounds and root-mean-squared estimates of statistical fluctuations of the involved loss functions. We show that in typical situations, the simultaneous GSIB compression requires qualitatively less data to achieve the same errors compared to compressing variables one at a time. We suggest that this is an example of a more general principle that simultaneous compression is more data efficient than independent compression of each of the input variables.\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\"36 7\",\"pages\":\"1353-1379\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10661261/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10661261/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Data Efficiency, Dimensionality Reduction, and the Generalized Symmetric Information Bottleneck
The symmetric information bottleneck (SIB), an extension of the more familiar information bottleneck, is a dimensionality-reduction technique that simultaneously compresses two random variables to preserve information between their compressed versions. We introduce the generalized symmetric information bottleneck (GSIB), which explores different functional forms of the cost of such simultaneous reduction. We then explore the data set size requirements of such simultaneous compression. We do this by deriving bounds and root-mean-squared estimates of statistical fluctuations of the involved loss functions. We show that in typical situations, the simultaneous GSIB compression requires qualitatively less data to achieve the same errors compared to compressing variables one at a time. We suggest that this is an example of a more general principle that simultaneous compression is more data efficient than independent compression of each of the input variables.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.