模拟矩阵乘积状态揭示克尔非线性非高斯动态的初始状态依赖性

Souvik Agasti
{"title":"模拟矩阵乘积状态揭示克尔非线性非高斯动态的初始状态依赖性","authors":"Souvik Agasti","doi":"10.1364/josab.519373","DOIUrl":null,"url":null,"abstract":"We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decimation (TEBD) algorithm to study the impact of the initial state on the exact quantum dynamics of the system. The superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation confirms that the system ends up saturating to two different branches, through evolving different trajectories, resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers the residual effect of the initial state.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of matrix product states to unveil the initial state dependency of non-Gaussian dynamics of Kerr nonlinearity\",\"authors\":\"Souvik Agasti\",\"doi\":\"10.1364/josab.519373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decimation (TEBD) algorithm to study the impact of the initial state on the exact quantum dynamics of the system. The superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation confirms that the system ends up saturating to two different branches, through evolving different trajectories, resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers the residual effect of the initial state.\",\"PeriodicalId\":501621,\"journal\":{\"name\":\"Journal of the Optical Society of America B\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.519373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.519373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们使用时间演化块抽取(TEBD)算法模拟了一个自由耗散和相干驱动的克尔非线性系统,研究了初始状态对系统精确量子动力学的影响。两个相干分支的叠加导致了非经典时间动力学。维格纳状态表征证实,系统通过演化不同的轨迹,最终饱和到两个不同的分支,导致整个演化过程中的去高斯化。此外,我们还看到时间演化受到初始状态的残余影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of matrix product states to unveil the initial state dependency of non-Gaussian dynamics of Kerr nonlinearity
We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decimation (TEBD) algorithm to study the impact of the initial state on the exact quantum dynamics of the system. The superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation confirms that the system ends up saturating to two different branches, through evolving different trajectories, resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers the residual effect of the initial state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信