{"title":"模拟矩阵乘积状态揭示克尔非线性非高斯动态的初始状态依赖性","authors":"Souvik Agasti","doi":"10.1364/josab.519373","DOIUrl":null,"url":null,"abstract":"We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decimation (TEBD) algorithm to study the impact of the initial state on the exact quantum dynamics of the system. The superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation confirms that the system ends up saturating to two different branches, through evolving different trajectories, resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers the residual effect of the initial state.","PeriodicalId":501621,"journal":{"name":"Journal of the Optical Society of America B","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of matrix product states to unveil the initial state dependency of non-Gaussian dynamics of Kerr nonlinearity\",\"authors\":\"Souvik Agasti\",\"doi\":\"10.1364/josab.519373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decimation (TEBD) algorithm to study the impact of the initial state on the exact quantum dynamics of the system. The superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation confirms that the system ends up saturating to two different branches, through evolving different trajectories, resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers the residual effect of the initial state.\",\"PeriodicalId\":501621,\"journal\":{\"name\":\"Journal of the Optical Society of America B\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Optical Society of America B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/josab.519373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Optical Society of America B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.519373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of matrix product states to unveil the initial state dependency of non-Gaussian dynamics of Kerr nonlinearity
We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decimation (TEBD) algorithm to study the impact of the initial state on the exact quantum dynamics of the system. The superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation confirms that the system ends up saturating to two different branches, through evolving different trajectories, resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers the residual effect of the initial state.