Andrea Ávila-Valdés, X. Carolina Lizana, Claudio Pastenes
{"title":"智利本土马铃薯在较高土壤和空气温度下的植物生长适应性:田间比较研究","authors":"Andrea Ávila-Valdés, X. Carolina Lizana, Claudio Pastenes","doi":"10.1007/s11540-024-09724-1","DOIUrl":null,"url":null,"abstract":"<p>A slight increase in air or soil temperature above the optimal range for potato cultivation can affect its performance in different regions of the world. To assess the potential impacts of future climatic conditions in southern Chile, a field experiment was conducted in two growing seasons (2021/2022 and 2022/2023) to examine the effects of an increase in air (+ 3–4 °C) and soil (+ 2–3 °C) temperatures on biomass accumulation and growth dynamics of one modern potato genotype and three Chilean native potato genotypes. To increase the temperature during the entire crop cycle, passive heating systems (i.e. open-top chambers and polyethylene mulch) were employed in this study. Our results showed that the commercial genotype Asterix had a yield reduction across all warmer treatments due to increased air and/or soil temperature. In contrast, the Chilean native potatoes had a comparative advantage against high air temperatures but not against higher soil temperatures. As expected, tuber yield changes coincided with variations in architecture and growth dynamics, differing among the different potato genotypes. Warmer soils would strongly influence the partitioning of assimilates to tubers, resulting in lower yields at higher temperatures.</p>","PeriodicalId":20378,"journal":{"name":"Potato Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant Growth Adaptations of Chilean Native Potato Under Higher Soil and Air Temperature: A Field Comparative Study\",\"authors\":\"Andrea Ávila-Valdés, X. Carolina Lizana, Claudio Pastenes\",\"doi\":\"10.1007/s11540-024-09724-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A slight increase in air or soil temperature above the optimal range for potato cultivation can affect its performance in different regions of the world. To assess the potential impacts of future climatic conditions in southern Chile, a field experiment was conducted in two growing seasons (2021/2022 and 2022/2023) to examine the effects of an increase in air (+ 3–4 °C) and soil (+ 2–3 °C) temperatures on biomass accumulation and growth dynamics of one modern potato genotype and three Chilean native potato genotypes. To increase the temperature during the entire crop cycle, passive heating systems (i.e. open-top chambers and polyethylene mulch) were employed in this study. Our results showed that the commercial genotype Asterix had a yield reduction across all warmer treatments due to increased air and/or soil temperature. In contrast, the Chilean native potatoes had a comparative advantage against high air temperatures but not against higher soil temperatures. As expected, tuber yield changes coincided with variations in architecture and growth dynamics, differing among the different potato genotypes. Warmer soils would strongly influence the partitioning of assimilates to tubers, resulting in lower yields at higher temperatures.</p>\",\"PeriodicalId\":20378,\"journal\":{\"name\":\"Potato Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potato Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11540-024-09724-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potato Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11540-024-09724-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Plant Growth Adaptations of Chilean Native Potato Under Higher Soil and Air Temperature: A Field Comparative Study
A slight increase in air or soil temperature above the optimal range for potato cultivation can affect its performance in different regions of the world. To assess the potential impacts of future climatic conditions in southern Chile, a field experiment was conducted in two growing seasons (2021/2022 and 2022/2023) to examine the effects of an increase in air (+ 3–4 °C) and soil (+ 2–3 °C) temperatures on biomass accumulation and growth dynamics of one modern potato genotype and three Chilean native potato genotypes. To increase the temperature during the entire crop cycle, passive heating systems (i.e. open-top chambers and polyethylene mulch) were employed in this study. Our results showed that the commercial genotype Asterix had a yield reduction across all warmer treatments due to increased air and/or soil temperature. In contrast, the Chilean native potatoes had a comparative advantage against high air temperatures but not against higher soil temperatures. As expected, tuber yield changes coincided with variations in architecture and growth dynamics, differing among the different potato genotypes. Warmer soils would strongly influence the partitioning of assimilates to tubers, resulting in lower yields at higher temperatures.
期刊介绍:
Potato Research, the journal of the European Association for Potato Research (EAPR), promotes the exchange of information on all aspects of this fast-evolving global industry. It offers the latest developments in innovative research to scientists active in potato research. The journal includes authoritative coverage of new scientific developments, publishing original research and review papers on such topics as:
Molecular sciences;
Breeding;
Physiology;
Pathology;
Nematology;
Virology;
Agronomy;
Engineering and Utilization.