论退化热方程初始边界值问题的良好拟合

IF 0.6 4区 数学 Q3 MATHEMATICS
A. R. Zainullov, K. B. Sabitov
{"title":"论退化热方程初始边界值问题的良好拟合","authors":"A. R. Zainullov, K. B. Sabitov","doi":"10.1134/s0001434624010188","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The well-posedness of an initial–boundary value problem for a model parabolic equation with two power-law degeneration lines is studied. Two initial–boundary value problems depending on the degeneracy exponents are stated, and uniqueness and existence theorems are proved. The solutions of these problems are constructed in closed form. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Well-Posedness of an Initial–Boundary Value Problem for a Degenerate Heat Equation\",\"authors\":\"A. R. Zainullov, K. B. Sabitov\",\"doi\":\"10.1134/s0001434624010188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The well-posedness of an initial–boundary value problem for a model parabolic equation with two power-law degeneration lines is studied. Two initial–boundary value problems depending on the degeneracy exponents are stated, and uniqueness and existence theorems are proved. The solutions of these problems are constructed in closed form. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624010188\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624010188","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了具有两条幂律退化线的模型抛物方程的初边界值问题的良好求解性。提出了两个取决于退化指数的初始边界值问题,并证明了唯一性和存在性定理。这些问题的解以封闭形式构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Well-Posedness of an Initial–Boundary Value Problem for a Degenerate Heat Equation

Abstract

The well-posedness of an initial–boundary value problem for a model parabolic equation with two power-law degeneration lines is studied. Two initial–boundary value problems depending on the degeneracy exponents are stated, and uniqueness and existence theorems are proved. The solutions of these problems are constructed in closed form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信