论数学编程问题的二阶充分最优条件

IF 0.6 4区 数学 Q3 MATHEMATICS
A. V. Arutyunov, S. E. Zhukovskiy
{"title":"论数学编程问题的二阶充分最优条件","authors":"A. V. Arutyunov, S. E. Zhukovskiy","doi":"10.1134/s0001434624010140","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We consider the constrained optimization problem for a smooth function defined on a Banach space with smooth constraints of equality and inequality type. We show that for this problem, under the known sufficient second-order optimality conditions, the set of Lagrange multipliers can be replaced by a smaller set. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Second Order Sufficient Optimality Conditions for a Problem of Mathematical Programming\",\"authors\":\"A. V. Arutyunov, S. E. Zhukovskiy\",\"doi\":\"10.1134/s0001434624010140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We consider the constrained optimization problem for a smooth function defined on a Banach space with smooth constraints of equality and inequality type. We show that for this problem, under the known sufficient second-order optimality conditions, the set of Lagrange multipliers can be replaced by a smaller set. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624010140\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624010140","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了一个定义在巴拿赫空间上的光滑函数的约束优化问题,该函数带有平等和不平等类型的光滑约束。我们证明,对于这个问题,在已知的充分二阶最优条件下,拉格朗日乘数集可以用一个更小的集来代替。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Second Order Sufficient Optimality Conditions for a Problem of Mathematical Programming

Abstract

We consider the constrained optimization problem for a smooth function defined on a Banach space with smooth constraints of equality and inequality type. We show that for this problem, under the known sufficient second-order optimality conditions, the set of Lagrange multipliers can be replaced by a smaller set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信