论三维薛定谔算子的负特征值之和

IF 0.6 4区 数学 Q3 MATHEMATICS
A. R. Aliev, E. H. Eyvazov
{"title":"论三维薛定谔算子的负特征值之和","authors":"A. R. Aliev, E. H. Eyvazov","doi":"10.1134/s0001434624010139","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> M. Demuth and G. Katriel (arXiv: math.SP/0802.2032) proved the finiteness of the sum of negative eigenvalues of the <span>\\(d\\)</span>-dimensional Schrödinger operator under certain conditions on the electrical potential for <span>\\(d\\ge 4\\)</span>. They also posed the following question: Is the restriction <span>\\(d\\ge 4\\)</span> a disadvantage of the method, or does it reflect the actual situation? In the present paper, we prove that the technique in the cited paper also works for the three-dimensional Schrödinger operator with Kato potential whose negative part is an integrable function and that this method does not apply to the two-dimensional Schrödinger operator. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Sum of Negative Eigenvalues of the Three-Dimensional Schrödinger Operator\",\"authors\":\"A. R. Aliev, E. H. Eyvazov\",\"doi\":\"10.1134/s0001434624010139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> M. Demuth and G. Katriel (arXiv: math.SP/0802.2032) proved the finiteness of the sum of negative eigenvalues of the <span>\\\\(d\\\\)</span>-dimensional Schrödinger operator under certain conditions on the electrical potential for <span>\\\\(d\\\\ge 4\\\\)</span>. They also posed the following question: Is the restriction <span>\\\\(d\\\\ge 4\\\\)</span> a disadvantage of the method, or does it reflect the actual situation? In the present paper, we prove that the technique in the cited paper also works for the three-dimensional Schrödinger operator with Kato potential whose negative part is an integrable function and that this method does not apply to the two-dimensional Schrödinger operator. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624010139\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624010139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 M. Demuth 和 G. Katriel(arXiv: math.SP/0802.2032)证明了在\(d\ge 4\) 电势的某些条件下,\(d\)维薛定谔算子负特征值之和的有限性。他们还提出了以下问题:限制 \(d\ge 4\) 是该方法的缺点,还是它反映了实际情况?在本文中,我们证明了引用论文中的技术也适用于负部分为可积分函数的具有加藤电势的三维薛定谔算子,而这种方法不适用于二维薛定谔算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Sum of Negative Eigenvalues of the Three-Dimensional Schrödinger Operator

Abstract

M. Demuth and G. Katriel (arXiv: math.SP/0802.2032) proved the finiteness of the sum of negative eigenvalues of the \(d\)-dimensional Schrödinger operator under certain conditions on the electrical potential for \(d\ge 4\). They also posed the following question: Is the restriction \(d\ge 4\) a disadvantage of the method, or does it reflect the actual situation? In the present paper, we prove that the technique in the cited paper also works for the three-dimensional Schrödinger operator with Kato potential whose negative part is an integrable function and that this method does not apply to the two-dimensional Schrödinger operator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信