用不可靠逻辑门的自校正电路实现线性布尔函数

IF 0.6 4区 数学 Q3 MATHEMATICS
K. A. Popkov
{"title":"用不可靠逻辑门的自校正电路实现线性布尔函数","authors":"K. A. Popkov","doi":"10.1134/s0001434624010073","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> We prove that if a Boolean function essentially depends on at least two variables, then it cannot be implemented by a circuit that consists of unreliable gates with at most two inputs each and is self-correcting with respect to at least some faults of an arbitrary number of gates. In view of the previous results, it suffices to establish this fact for linear functions. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates\",\"authors\":\"K. A. Popkov\",\"doi\":\"10.1134/s0001434624010073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> We prove that if a Boolean function essentially depends on at least two variables, then it cannot be implemented by a circuit that consists of unreliable gates with at most two inputs each and is self-correcting with respect to at least some faults of an arbitrary number of gates. In view of the previous results, it suffices to establish this fact for linear functions. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434624010073\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434624010073","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们证明,如果一个布尔函数本质上至少取决于两个变量,那么它就不能由一个电路来实现,该电路由不可靠门电路组成,每个不可靠门电路最多有两个输入端,并且至少对任意数量门电路的某些故障具有自校正功能。鉴于前面的结果,只需为线性函数建立这一事实即可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates

Implementation of Linear Boolean Functions by Self-Correcting Circuits of Unreliable Logic Gates

Abstract

We prove that if a Boolean function essentially depends on at least two variables, then it cannot be implemented by a circuit that consists of unreliable gates with at most two inputs each and is self-correcting with respect to at least some faults of an arbitrary number of gates. In view of the previous results, it suffices to establish this fact for linear functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信