{"title":"通过其与顶夸克质量的尺度不变微扰关系精确测定顶夸克的壳上质量 * * 部分受国家自然科学基金(12247129, 12175025, 12347101)和重庆市研究生科研创新基金(ydstd1912)资助","authors":"Xu-Dong Huang, Xing-Gang Wu, Xu-Chang Zheng, Jiang Yan, Zhi-Fei Wu, Hong-Hao Ma","doi":"10.1088/1674-1137/ad2dbf","DOIUrl":null,"url":null,"abstract":"The principle of maximum conformality (PMC) provides a systematic approach to solve the conventional renormalization scheme and scale ambiguities. Scale-fixed predictions of physical observables using the PMC are independent of the choice of renormalization scheme – a key requirement for renormalization group invariance. In this paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual <italic toggle=\"yes\">β</italic>-function and the quark mass anomalous dimension <inline-formula>\n<tex-math><?CDATA $ \\gamma_m $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M4.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-function. These new degeneracy relations enable improved PMC scale-setting procedures for correct magnitudes of the strong coupling constant and <inline-formula>\n<tex-math><?CDATA $ \\overline{{\\rm{MS}}} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M5.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-running quark mass to be determined simultaneously. By using these improved PMC scale-setting procedures, the renormalization scale dependence of the <inline-formula>\n<tex-math><?CDATA $ \\overline{{\\rm{MS}}} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M6.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-on-shell quark mass relation can be eliminated systematically. Consequently, the top-quark on-shell (or <inline-formula>\n<tex-math><?CDATA $ \\overline{{\\rm{MS}}} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M7.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) mass can be determined without conventional renormalization scale ambiguity. Taking the top-quark <inline-formula>\n<tex-math><?CDATA $ \\overline{{\\rm{MS}}} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M8.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> mass <inline-formula>\n<tex-math><?CDATA $ {\\overline m}_t({\\overline m}_t)=162.5^{+2.1}_{-1.5} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M9.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> GeV as the input, we obtain <inline-formula>\n<tex-math><?CDATA $ M_t\\simeq 172.41^{+2.21}_{-1.57} $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M10.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> GeV. Here, the uncertainties arise from errors combined with those from <inline-formula>\n<tex-math><?CDATA $ \\Delta \\alpha_s(M_Z) $?></tex-math>\n<inline-graphic xlink:href=\"cpc_48_5_053113_M11.jpg\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and the approximate uncertainty resulting from the uncalculated five-loop terms predicted through the Padé approximation approach.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"54 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise determination of the top-quark on-shell mass via its scale- invariant perturbative relation to the top-quark mass * * Supported in part by the National Natural Science Foundation of China (12247129, 12175025, 12347101) and the Graduate Research and Innovation Foundation of Chongqing, China (ydstd1912)\",\"authors\":\"Xu-Dong Huang, Xing-Gang Wu, Xu-Chang Zheng, Jiang Yan, Zhi-Fei Wu, Hong-Hao Ma\",\"doi\":\"10.1088/1674-1137/ad2dbf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principle of maximum conformality (PMC) provides a systematic approach to solve the conventional renormalization scheme and scale ambiguities. Scale-fixed predictions of physical observables using the PMC are independent of the choice of renormalization scheme – a key requirement for renormalization group invariance. In this paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual <italic toggle=\\\"yes\\\">β</italic>-function and the quark mass anomalous dimension <inline-formula>\\n<tex-math><?CDATA $ \\\\gamma_m $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M4.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>-function. These new degeneracy relations enable improved PMC scale-setting procedures for correct magnitudes of the strong coupling constant and <inline-formula>\\n<tex-math><?CDATA $ \\\\overline{{\\\\rm{MS}}} $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M5.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>-running quark mass to be determined simultaneously. By using these improved PMC scale-setting procedures, the renormalization scale dependence of the <inline-formula>\\n<tex-math><?CDATA $ \\\\overline{{\\\\rm{MS}}} $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M6.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>-on-shell quark mass relation can be eliminated systematically. Consequently, the top-quark on-shell (or <inline-formula>\\n<tex-math><?CDATA $ \\\\overline{{\\\\rm{MS}}} $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M7.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>) mass can be determined without conventional renormalization scale ambiguity. Taking the top-quark <inline-formula>\\n<tex-math><?CDATA $ \\\\overline{{\\\\rm{MS}}} $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M8.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> mass <inline-formula>\\n<tex-math><?CDATA $ {\\\\overline m}_t({\\\\overline m}_t)=162.5^{+2.1}_{-1.5} $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M9.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> GeV as the input, we obtain <inline-formula>\\n<tex-math><?CDATA $ M_t\\\\simeq 172.41^{+2.21}_{-1.57} $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M10.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> GeV. Here, the uncertainties arise from errors combined with those from <inline-formula>\\n<tex-math><?CDATA $ \\\\Delta \\\\alpha_s(M_Z) $?></tex-math>\\n<inline-graphic xlink:href=\\\"cpc_48_5_053113_M11.jpg\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and the approximate uncertainty resulting from the uncalculated five-loop terms predicted through the Padé approximation approach.\",\"PeriodicalId\":10250,\"journal\":{\"name\":\"中国物理C\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国物理C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad2dbf\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad2dbf","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Precise determination of the top-quark on-shell mass via its scale- invariant perturbative relation to the top-quark mass * * Supported in part by the National Natural Science Foundation of China (12247129, 12175025, 12347101) and the Graduate Research and Innovation Foundation of Chongqing, China (ydstd1912)
The principle of maximum conformality (PMC) provides a systematic approach to solve the conventional renormalization scheme and scale ambiguities. Scale-fixed predictions of physical observables using the PMC are independent of the choice of renormalization scheme – a key requirement for renormalization group invariance. In this paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual β-function and the quark mass anomalous dimension -function. These new degeneracy relations enable improved PMC scale-setting procedures for correct magnitudes of the strong coupling constant and -running quark mass to be determined simultaneously. By using these improved PMC scale-setting procedures, the renormalization scale dependence of the -on-shell quark mass relation can be eliminated systematically. Consequently, the top-quark on-shell (or ) mass can be determined without conventional renormalization scale ambiguity. Taking the top-quark mass GeV as the input, we obtain GeV. Here, the uncertainties arise from errors combined with those from and the approximate uncertainty resulting from the uncalculated five-loop terms predicted through the Padé approximation approach.
期刊介绍:
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of:
Particle physics;
Nuclear physics;
Particle and nuclear astrophysics;
Cosmology;
Accelerator physics.
The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication.
The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal.
The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.