{"title":"重新审视热涡度诱发的自旋效应*","authors":"Jian-Hua Gao, 建华 高, Shi-Zheng Yang and 诗正 杨","doi":"10.1088/1674-1137/ad2363","DOIUrl":null,"url":null,"abstract":"We revisit the spin effects induced by thermal vorticity by calculating them directly from the spin-dependent distribution functions. For spin-1/2 particles, we provide the polarization up to the first order of thermal vorticity and compare it with the usual results calculated from the spin vector. For spin-1 particles, we show that all the non-diagonal elements vanish and there is no spin alignment up to the first order of thermal vortcity. We present the spin alignment at second-order contribution from thermal vorticity. We also show that the spin effects for both Dirac and vector particles receive an extra contribution when the spin direction is associated with the momentum of the particle.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the spin effects induced by thermal vorticity*\",\"authors\":\"Jian-Hua Gao, 建华 高, Shi-Zheng Yang and 诗正 杨\",\"doi\":\"10.1088/1674-1137/ad2363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the spin effects induced by thermal vorticity by calculating them directly from the spin-dependent distribution functions. For spin-1/2 particles, we provide the polarization up to the first order of thermal vorticity and compare it with the usual results calculated from the spin vector. For spin-1 particles, we show that all the non-diagonal elements vanish and there is no spin alignment up to the first order of thermal vortcity. We present the spin alignment at second-order contribution from thermal vorticity. We also show that the spin effects for both Dirac and vector particles receive an extra contribution when the spin direction is associated with the momentum of the particle.\",\"PeriodicalId\":10250,\"journal\":{\"name\":\"中国物理C\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国物理C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad2363\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad2363","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Revisiting the spin effects induced by thermal vorticity*
We revisit the spin effects induced by thermal vorticity by calculating them directly from the spin-dependent distribution functions. For spin-1/2 particles, we provide the polarization up to the first order of thermal vorticity and compare it with the usual results calculated from the spin vector. For spin-1 particles, we show that all the non-diagonal elements vanish and there is no spin alignment up to the first order of thermal vortcity. We present the spin alignment at second-order contribution from thermal vorticity. We also show that the spin effects for both Dirac and vector particles receive an extra contribution when the spin direction is associated with the momentum of the particle.
期刊介绍:
Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of:
Particle physics;
Nuclear physics;
Particle and nuclear astrophysics;
Cosmology;
Accelerator physics.
The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication.
The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal.
The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.