{"title":"明渠矩形迷宫堰的实验和数值研究","authors":"M. Cihan Aydin, Ali Emre Ulu, Ercan Işik","doi":"10.1680/jwama.22.00112","DOIUrl":null,"url":null,"abstract":"Labyrinth weirs are commonly used hydraulic structures to increase discharge efficiency in free-overflow discharges. These weirs provide higher discharge efficiency than conventional linear weirs at the same headwaters. This study investigated hydraulic performance of rectangular labyrinth weirs under different geometries and flow conditions experimentally and numerically. The numerical model was verified and validated using the grid convergence index method recommended in the literature and the experimental data. The numerical modelling results showed that the increase in performance of the labyrinth weir was caused by the distribution of lateral velocities in the inlet keys, while the nappe interference in the downstream keys was responsible for the decrease in performance at high headwater. Within the limitations of 1.5≤<i>L/B</i>≤2.33 and 0.1<<i>H<sub>o</sub>/P</i><0.61, a performance increase of 44% on average and a maximum of 67% for unit channel width was found for rectangular labyrinth weirs compared to linear weirs. For given limitations, two new empirical formulas with high correlation were derived to estimate the discharge coefficients of rectangular labyrinth weirs based on channel width (<i>B</i>) and weir crest length (<i>L</i>) for <i>H<sub>o</sub></i>/<i>P</i>>0.1 in which are widely used in practice. It is concluded that, when compared with some of the data in the literature, the empirical formulas give satisfactory results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of rectangular Labyrinth weirs in open channel\",\"authors\":\"M. Cihan Aydin, Ali Emre Ulu, Ercan Işik\",\"doi\":\"10.1680/jwama.22.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Labyrinth weirs are commonly used hydraulic structures to increase discharge efficiency in free-overflow discharges. These weirs provide higher discharge efficiency than conventional linear weirs at the same headwaters. This study investigated hydraulic performance of rectangular labyrinth weirs under different geometries and flow conditions experimentally and numerically. The numerical model was verified and validated using the grid convergence index method recommended in the literature and the experimental data. The numerical modelling results showed that the increase in performance of the labyrinth weir was caused by the distribution of lateral velocities in the inlet keys, while the nappe interference in the downstream keys was responsible for the decrease in performance at high headwater. Within the limitations of 1.5≤<i>L/B</i>≤2.33 and 0.1<<i>H<sub>o</sub>/P</i><0.61, a performance increase of 44% on average and a maximum of 67% for unit channel width was found for rectangular labyrinth weirs compared to linear weirs. For given limitations, two new empirical formulas with high correlation were derived to estimate the discharge coefficients of rectangular labyrinth weirs based on channel width (<i>B</i>) and weir crest length (<i>L</i>) for <i>H<sub>o</sub></i>/<i>P</i>>0.1 in which are widely used in practice. It is concluded that, when compared with some of the data in the literature, the empirical formulas give satisfactory results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.22.00112\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jwama.22.00112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental and numerical investigation of rectangular Labyrinth weirs in open channel
Labyrinth weirs are commonly used hydraulic structures to increase discharge efficiency in free-overflow discharges. These weirs provide higher discharge efficiency than conventional linear weirs at the same headwaters. This study investigated hydraulic performance of rectangular labyrinth weirs under different geometries and flow conditions experimentally and numerically. The numerical model was verified and validated using the grid convergence index method recommended in the literature and the experimental data. The numerical modelling results showed that the increase in performance of the labyrinth weir was caused by the distribution of lateral velocities in the inlet keys, while the nappe interference in the downstream keys was responsible for the decrease in performance at high headwater. Within the limitations of 1.5≤L/B≤2.33 and 0.1<Ho/P<0.61, a performance increase of 44% on average and a maximum of 67% for unit channel width was found for rectangular labyrinth weirs compared to linear weirs. For given limitations, two new empirical formulas with high correlation were derived to estimate the discharge coefficients of rectangular labyrinth weirs based on channel width (B) and weir crest length (L) for Ho/P>0.1 in which are widely used in practice. It is concluded that, when compared with some of the data in the literature, the empirical formulas give satisfactory results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.