明渠矩形迷宫堰的实验和数值研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Cihan Aydin, Ali Emre Ulu, Ercan Işik
{"title":"明渠矩形迷宫堰的实验和数值研究","authors":"M. Cihan Aydin, Ali Emre Ulu, Ercan Işik","doi":"10.1680/jwama.22.00112","DOIUrl":null,"url":null,"abstract":"Labyrinth weirs are commonly used hydraulic structures to increase discharge efficiency in free-overflow discharges. These weirs provide higher discharge efficiency than conventional linear weirs at the same headwaters. This study investigated hydraulic performance of rectangular labyrinth weirs under different geometries and flow conditions experimentally and numerically. The numerical model was verified and validated using the grid convergence index method recommended in the literature and the experimental data. The numerical modelling results showed that the increase in performance of the labyrinth weir was caused by the distribution of lateral velocities in the inlet keys, while the nappe interference in the downstream keys was responsible for the decrease in performance at high headwater. Within the limitations of 1.5≤<i>L/B</i>≤2.33 and 0.1&lt;<i>H<sub>o</sub>/P</i>&lt;0.61, a performance increase of 44% on average and a maximum of 67% for unit channel width was found for rectangular labyrinth weirs compared to linear weirs. For given limitations, two new empirical formulas with high correlation were derived to estimate the discharge coefficients of rectangular labyrinth weirs based on channel width (<i>B</i>) and weir crest length (<i>L</i>) for <i>H<sub>o</sub></i>/<i>P</i>&gt;0.1 in which are widely used in practice. It is concluded that, when compared with some of the data in the literature, the empirical formulas give satisfactory results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of rectangular Labyrinth weirs in open channel\",\"authors\":\"M. Cihan Aydin, Ali Emre Ulu, Ercan Işik\",\"doi\":\"10.1680/jwama.22.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Labyrinth weirs are commonly used hydraulic structures to increase discharge efficiency in free-overflow discharges. These weirs provide higher discharge efficiency than conventional linear weirs at the same headwaters. This study investigated hydraulic performance of rectangular labyrinth weirs under different geometries and flow conditions experimentally and numerically. The numerical model was verified and validated using the grid convergence index method recommended in the literature and the experimental data. The numerical modelling results showed that the increase in performance of the labyrinth weir was caused by the distribution of lateral velocities in the inlet keys, while the nappe interference in the downstream keys was responsible for the decrease in performance at high headwater. Within the limitations of 1.5≤<i>L/B</i>≤2.33 and 0.1&lt;<i>H<sub>o</sub>/P</i>&lt;0.61, a performance increase of 44% on average and a maximum of 67% for unit channel width was found for rectangular labyrinth weirs compared to linear weirs. For given limitations, two new empirical formulas with high correlation were derived to estimate the discharge coefficients of rectangular labyrinth weirs based on channel width (<i>B</i>) and weir crest length (<i>L</i>) for <i>H<sub>o</sub></i>/<i>P</i>&gt;0.1 in which are widely used in practice. It is concluded that, when compared with some of the data in the literature, the empirical formulas give satisfactory results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.22.00112\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jwama.22.00112","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

迷宫堰是常用的水力结构,可提高自由溢流排水的排放效率。与传统的直线型堰渠相比,迷宫堰渠在相同水头的排泄效率更高。本研究通过实验和数值方法研究了矩形迷宫堰在不同几何形状和流动条件下的水力性能。利用文献中推荐的网格收敛指数法和实验数据对数值模型进行了验证和确认。数值建模结果表明,迷宫堰性能的提高是由入口堰体的横向流速分布造成的,而下游堰体的锥体干扰则是高水头时性能下降的原因。在 1.5≤L/B≤2.33 和 0.1<Ho/P<0.61 的限制条件下,矩形迷宫堰与直线堰相比,单位河道宽度的性能平均提高了 44%,最大提高了 67%。针对上述局限性,得出了两个新的相关性较高的经验公式,用于估算实践中广泛使用的基于渠道宽度(B)和堰顶长度(L)(Ho/P>0.1)的矩形迷宫堰的排泄系数。结论是,与文献中的一些数据相比,经验公式给出了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and numerical investigation of rectangular Labyrinth weirs in open channel
Labyrinth weirs are commonly used hydraulic structures to increase discharge efficiency in free-overflow discharges. These weirs provide higher discharge efficiency than conventional linear weirs at the same headwaters. This study investigated hydraulic performance of rectangular labyrinth weirs under different geometries and flow conditions experimentally and numerically. The numerical model was verified and validated using the grid convergence index method recommended in the literature and the experimental data. The numerical modelling results showed that the increase in performance of the labyrinth weir was caused by the distribution of lateral velocities in the inlet keys, while the nappe interference in the downstream keys was responsible for the decrease in performance at high headwater. Within the limitations of 1.5≤L/B≤2.33 and 0.1<Ho/P<0.61, a performance increase of 44% on average and a maximum of 67% for unit channel width was found for rectangular labyrinth weirs compared to linear weirs. For given limitations, two new empirical formulas with high correlation were derived to estimate the discharge coefficients of rectangular labyrinth weirs based on channel width (B) and weir crest length (L) for Ho/P>0.1 in which are widely used in practice. It is concluded that, when compared with some of the data in the literature, the empirical formulas give satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信