{"title":"极值数和西多连科猜想","authors":"David Conlon, Joonkyung Lee, Alexander Sidorenko","doi":"10.1093/imrn/rnae071","DOIUrl":null,"url":null,"abstract":"Sidorenko’s conjecture states that, for all bipartite graphs $H$, quasirandom graphs contain asymptotically the minimum number of copies of $H$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $r$-partite $r$-uniform hypergraph $H$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $\\textrm {ex}(n,H)$, the maximum number of edges in an $n$-vertex $H$-free $r$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $3$-partite $3$-uniform tight cycles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Numbers and Sidorenko’s Conjecture\",\"authors\":\"David Conlon, Joonkyung Lee, Alexander Sidorenko\",\"doi\":\"10.1093/imrn/rnae071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sidorenko’s conjecture states that, for all bipartite graphs $H$, quasirandom graphs contain asymptotically the minimum number of copies of $H$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $r$-partite $r$-uniform hypergraph $H$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $\\\\textrm {ex}(n,H)$, the maximum number of edges in an $n$-vertex $H$-free $r$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $3$-partite $3$-uniform tight cycles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sidorenko’s conjecture states that, for all bipartite graphs $H$, quasirandom graphs contain asymptotically the minimum number of copies of $H$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $r$-partite $r$-uniform hypergraph $H$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $\textrm {ex}(n,H)$, the maximum number of edges in an $n$-vertex $H$-free $r$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $3$-partite $3$-uniform tight cycles.