极值数和西多连科猜想

Pub Date : 2024-04-24 DOI:10.1093/imrn/rnae071
David Conlon, Joonkyung Lee, Alexander Sidorenko
{"title":"极值数和西多连科猜想","authors":"David Conlon, Joonkyung Lee, Alexander Sidorenko","doi":"10.1093/imrn/rnae071","DOIUrl":null,"url":null,"abstract":"Sidorenko’s conjecture states that, for all bipartite graphs $H$, quasirandom graphs contain asymptotically the minimum number of copies of $H$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $r$-partite $r$-uniform hypergraph $H$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $\\textrm {ex}(n,H)$, the maximum number of edges in an $n$-vertex $H$-free $r$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $3$-partite $3$-uniform tight cycles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Numbers and Sidorenko’s Conjecture\",\"authors\":\"David Conlon, Joonkyung Lee, Alexander Sidorenko\",\"doi\":\"10.1093/imrn/rnae071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sidorenko’s conjecture states that, for all bipartite graphs $H$, quasirandom graphs contain asymptotically the minimum number of copies of $H$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $r$-partite $r$-uniform hypergraph $H$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $\\\\textrm {ex}(n,H)$, the maximum number of edges in an $n$-vertex $H$-free $r$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $3$-partite $3$-uniform tight cycles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

西多连科猜想指出,对于所有双方形图$H$,准随机图包含的$H$拷贝数近似为具有相同阶数和边密度的所有图的最小拷贝数。虽然对于图而言,类比声明仍是开放的,但对于超图而言,类比声明是错误的。我们的研究表明,如果西多连科的猜想对于一个特定的 $r$ 部分 $r$ Uniform 超图 $H$ 不成立,那么就有可能通过概率删除法改进其极值数 $\textrm {ex}(n,H)$ 的标准下界,即一个 $n$ 无顶点 $H$ 的 $r$ Uniform 超图中的最大边数。考虑到这一应用,我们为超图的猜想找到了一系列新的反例,包括所有包含松散三角形的线性超图和所有$3$部分$3$均匀紧循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extremal Numbers and Sidorenko’s Conjecture
Sidorenko’s conjecture states that, for all bipartite graphs $H$, quasirandom graphs contain asymptotically the minimum number of copies of $H$ taken over all graphs with the same order and edge density. While still open for graphs, the analogous statement is known to be false for hypergraphs. We show that there is some advantage in this, in that if Sidorenko’s conjecture does not hold for a particular $r$-partite $r$-uniform hypergraph $H$, then it is possible to improve the standard lower bound, coming from the probabilistic deletion method, for its extremal number $\textrm {ex}(n,H)$, the maximum number of edges in an $n$-vertex $H$-free $r$-uniform hypergraph. With this application in mind, we find a range of new counterexamples to the conjecture for hypergraphs, including all linear hypergraphs containing a loose triangle and all $3$-partite $3$-uniform tight cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信