具有诺特线附近最大皮卡数的一般类型曲面

Pub Date : 2024-04-22 DOI:10.1093/imrn/rnae075
Nguyen Bin, Vicente Lorenzo
{"title":"具有诺特线附近最大皮卡数的一般类型曲面","authors":"Nguyen Bin, Vicente Lorenzo","doi":"10.1093/imrn/rnae075","DOIUrl":null,"url":null,"abstract":"The first published non-trivial examples of algebraic surfaces of general type with maximal Picard number are due to Persson, who constructed surfaces with maximal Picard number on the Noether line $K^{2}=2\\chi -6$ for every admissible pair $(K^{2},\\chi )$ such that $\\chi \\not \\equiv 0 \\ \\text {mod}\\ 6$. In this note, given a non-negative integer $k$, algebraic surfaces of general type with maximal Picard number lying on the line $K^{2}=2\\chi -6+k$ are constructed for every admissible pair $(K^{2},\\chi )$ such that $\\chi \\geq 2k+10$. These constructions, obtained as bidouble covers of rational surfaces, not only allow to fill in Persson’s gap on the Noether line, but also provide infinitely many new examples of algebraic surfaces of general type with maximal Picard number above the Noether line.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfaces of General Type with Maximal Picard Number Near the Noether Line\",\"authors\":\"Nguyen Bin, Vicente Lorenzo\",\"doi\":\"10.1093/imrn/rnae075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first published non-trivial examples of algebraic surfaces of general type with maximal Picard number are due to Persson, who constructed surfaces with maximal Picard number on the Noether line $K^{2}=2\\\\chi -6$ for every admissible pair $(K^{2},\\\\chi )$ such that $\\\\chi \\\\not \\\\equiv 0 \\\\ \\\\text {mod}\\\\ 6$. In this note, given a non-negative integer $k$, algebraic surfaces of general type with maximal Picard number lying on the line $K^{2}=2\\\\chi -6+k$ are constructed for every admissible pair $(K^{2},\\\\chi )$ such that $\\\\chi \\\\geq 2k+10$. These constructions, obtained as bidouble covers of rational surfaces, not only allow to fill in Persson’s gap on the Noether line, but also provide infinitely many new examples of algebraic surfaces of general type with maximal Picard number above the Noether line.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

佩尔松(Persson)首次发表了具有最大皮卡数的一般类型代数曲面的非微观例子,他为每一对可容许的$(K^{2},\chi )$构造了在诺特直线$K^{2}=2\chi -6$上具有最大皮卡数的曲面,使得$\chi \not \equiv 0 \ \text {mod}\ 6$。在本注释中,给定一个非负整数 $k$,对于每一对可容许的 $(K^{2},\chi )$ ,使得 $\chi \geq 2k+10$ 的最大皮卡数位于线 $K^{2}=2\chi -6+k$ 上的一般类型的代数曲面都被构造出来。这些作为有理曲面的双双盖而得到的构造,不仅填补了佩尔松在诺特线上的空白,而且提供了无限多的新例子,说明一般类型的代数曲面的最大皮卡数高于诺特线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Surfaces of General Type with Maximal Picard Number Near the Noether Line
The first published non-trivial examples of algebraic surfaces of general type with maximal Picard number are due to Persson, who constructed surfaces with maximal Picard number on the Noether line $K^{2}=2\chi -6$ for every admissible pair $(K^{2},\chi )$ such that $\chi \not \equiv 0 \ \text {mod}\ 6$. In this note, given a non-negative integer $k$, algebraic surfaces of general type with maximal Picard number lying on the line $K^{2}=2\chi -6+k$ are constructed for every admissible pair $(K^{2},\chi )$ such that $\chi \geq 2k+10$. These constructions, obtained as bidouble covers of rational surfaces, not only allow to fill in Persson’s gap on the Noether line, but also provide infinitely many new examples of algebraic surfaces of general type with maximal Picard number above the Noether line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信