{"title":"通用代数的变形构造","authors":"David Bowman, Dora Puljić, Agata Smoktunowicz","doi":"10.1093/imrn/rnae077","DOIUrl":null,"url":null,"abstract":"One of the questions investigated in deformation theory is to determine to which algebras can a given associative algebra be deformed. In this paper we investigate a different but related question, namely: for a given associative finite-dimensional ${\\mathbb{C}}$-algebra $A$, find algebras $N$, which can be deformed to $A$. We develop a simple method that produces associative and flat deformations to investigate this question. As an application of this method we answer a question of Michael Wemyss about deformations of contraction algebras.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Construction of Deformations to General Algebras\",\"authors\":\"David Bowman, Dora Puljić, Agata Smoktunowicz\",\"doi\":\"10.1093/imrn/rnae077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the questions investigated in deformation theory is to determine to which algebras can a given associative algebra be deformed. In this paper we investigate a different but related question, namely: for a given associative finite-dimensional ${\\\\mathbb{C}}$-algebra $A$, find algebras $N$, which can be deformed to $A$. We develop a simple method that produces associative and flat deformations to investigate this question. As an application of this method we answer a question of Michael Wemyss about deformations of contraction algebras.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Construction of Deformations to General Algebras
One of the questions investigated in deformation theory is to determine to which algebras can a given associative algebra be deformed. In this paper we investigate a different but related question, namely: for a given associative finite-dimensional ${\mathbb{C}}$-algebra $A$, find algebras $N$, which can be deformed to $A$. We develop a simple method that produces associative and flat deformations to investigate this question. As an application of this method we answer a question of Michael Wemyss about deformations of contraction algebras.