脉冲低强度聚焦超声(LIFU)激活卵泡

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Yan Xiao;Lixia Yang;Yicong Wang;Yu Wang;Yuning Chen;Wenhan Lu;Zhenle Pei;Ruonan Zhang;Yao Ye;Xiaowei Ji;Suying Liu;Xi Dong;Yonghua Xu;Yi Feng
{"title":"脉冲低强度聚焦超声(LIFU)激活卵泡","authors":"Yan Xiao;Lixia Yang;Yicong Wang;Yu Wang;Yuning Chen;Wenhan Lu;Zhenle Pei;Ruonan Zhang;Yao Ye;Xiaowei Ji;Suying Liu;Xi Dong;Yonghua Xu;Yi Feng","doi":"10.1109/OJEMB.2024.3391939","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i>\n A biological system's internal morphological structure or function can be changed as a result of the mechanical effect of focused ultrasound. Pulsed low-intensity focused ultrasound (LIFU) has mechanical effects that might induce follicle development with less damage to ovarian tissue. The potential development of LIFU as a non-invasive method for the treatment of female infertility is being considered, and this study sought to explore and confirm that LIFU can activate ovarian follicles. \n<italic>Results:</i>\n We found a 50% increase in ovarian weight and in the number of mature follicles on the ultrasound-stimulated side with pulsed LIFU and intraperitoneal injection of 10 IU PMSG in 10-day-old rats. After ultrasound stimulation, the PCOS-like rats had a decrease in androgen levels, restoration of regular estrous cycle and increase in the number of mature follicles and corpora lutea, and the ratio of M1 and M2 type macrophages was altered in antral follicles of PCOS-like rats, consequently promoting further development and maturation of antral follicles. \n<italic>Conclusion:</i>\n LIFU treatment could trigger actin changes in ovarian cells, which might disrupt the Hippo signal pathway to promote follicle formation, and the mechanical impact on the ovaries of PCOS-like rats improved antral follicle development.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508955","citationCount":"0","resultStr":"{\"title\":\"Pulsed Low-Intensity Focused Ultrasound (LIFU) Activation of Ovarian Follicles\",\"authors\":\"Yan Xiao;Lixia Yang;Yicong Wang;Yu Wang;Yuning Chen;Wenhan Lu;Zhenle Pei;Ruonan Zhang;Yao Ye;Xiaowei Ji;Suying Liu;Xi Dong;Yonghua Xu;Yi Feng\",\"doi\":\"10.1109/OJEMB.2024.3391939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i>\\n A biological system's internal morphological structure or function can be changed as a result of the mechanical effect of focused ultrasound. Pulsed low-intensity focused ultrasound (LIFU) has mechanical effects that might induce follicle development with less damage to ovarian tissue. The potential development of LIFU as a non-invasive method for the treatment of female infertility is being considered, and this study sought to explore and confirm that LIFU can activate ovarian follicles. \\n<italic>Results:</i>\\n We found a 50% increase in ovarian weight and in the number of mature follicles on the ultrasound-stimulated side with pulsed LIFU and intraperitoneal injection of 10 IU PMSG in 10-day-old rats. After ultrasound stimulation, the PCOS-like rats had a decrease in androgen levels, restoration of regular estrous cycle and increase in the number of mature follicles and corpora lutea, and the ratio of M1 and M2 type macrophages was altered in antral follicles of PCOS-like rats, consequently promoting further development and maturation of antral follicles. \\n<italic>Conclusion:</i>\\n LIFU treatment could trigger actin changes in ovarian cells, which might disrupt the Hippo signal pathway to promote follicle formation, and the mechanical impact on the ovaries of PCOS-like rats improved antral follicle development.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10508955\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508955/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10508955/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的聚焦超声的机械效应可改变生物系统的内部形态结构或功能。脉冲低强度聚焦超声(LIFU)具有机械效应,可诱导卵泡发育,同时对卵巢组织的损伤较小。目前正在考虑将低强度聚焦超声作为治疗女性不孕症的一种非侵入性方法,本研究试图探索并证实低强度聚焦超声可以激活卵巢卵泡。结果我们发现,在脉冲 LIFU 和腹腔注射 10 IU PMSG 的情况下,10 日龄大鼠卵巢重量和超声刺激侧成熟卵泡数量增加了 50%。超声刺激后,PCOS 样大鼠雄激素水平下降,发情周期恢复正常,成熟卵泡和黄体数量增加,PCOS 样大鼠窦前卵泡中 M1 和 M2 型巨噬细胞的比例发生改变,从而促进了窦前卵泡的进一步发育和成熟。结论LIFU治疗可引发卵巢细胞肌动蛋白变化,从而破坏Hippo信号通路以促进卵泡形成,而对PCOS样大鼠卵巢的机械影响可改善前房卵泡的发育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pulsed Low-Intensity Focused Ultrasound (LIFU) Activation of Ovarian Follicles
Objective: A biological system's internal morphological structure or function can be changed as a result of the mechanical effect of focused ultrasound. Pulsed low-intensity focused ultrasound (LIFU) has mechanical effects that might induce follicle development with less damage to ovarian tissue. The potential development of LIFU as a non-invasive method for the treatment of female infertility is being considered, and this study sought to explore and confirm that LIFU can activate ovarian follicles. Results: We found a 50% increase in ovarian weight and in the number of mature follicles on the ultrasound-stimulated side with pulsed LIFU and intraperitoneal injection of 10 IU PMSG in 10-day-old rats. After ultrasound stimulation, the PCOS-like rats had a decrease in androgen levels, restoration of regular estrous cycle and increase in the number of mature follicles and corpora lutea, and the ratio of M1 and M2 type macrophages was altered in antral follicles of PCOS-like rats, consequently promoting further development and maturation of antral follicles. Conclusion: LIFU treatment could trigger actin changes in ovarian cells, which might disrupt the Hippo signal pathway to promote follicle formation, and the mechanical impact on the ovaries of PCOS-like rats improved antral follicle development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信