部分信息失真风险度量的极端情况

Mengshuo Zhao, Narayanaswamy Balakrishnan, Chuancun Yin
{"title":"部分信息失真风险度量的极端情况","authors":"Mengshuo Zhao, Narayanaswamy Balakrishnan, Chuancun Yin","doi":"arxiv-2404.13637","DOIUrl":null,"url":null,"abstract":"This paper considers the best- and worst-case of a general class of\ndistortion risk measures when only partial information regarding the underlying\ndistributions is available. Specifically, explicit sharp lower and upper bounds\nfor a general class of distortion risk measures are derived based on the first\ntwo moments along with some shape information, such as symmetry/unimodality\nproperty of the underlying distributions. The proposed approach provides a\nunified framework for extremal problems of distortion risk measures.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal cases of distortion risk measures with partial information\",\"authors\":\"Mengshuo Zhao, Narayanaswamy Balakrishnan, Chuancun Yin\",\"doi\":\"arxiv-2404.13637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the best- and worst-case of a general class of\\ndistortion risk measures when only partial information regarding the underlying\\ndistributions is available. Specifically, explicit sharp lower and upper bounds\\nfor a general class of distortion risk measures are derived based on the first\\ntwo moments along with some shape information, such as symmetry/unimodality\\nproperty of the underlying distributions. The proposed approach provides a\\nunified framework for extremal problems of distortion risk measures.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.13637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了在只有部分基础分布信息的情况下,一般失真风险度量的最佳和最差情况。具体来说,本文基于前两个矩和一些形状信息(如基础分布的对称性/非模态属性),推导出了一般类别失真风险度量的明确尖锐下限和上限。所提出的方法为失真风险度量的极值问题提供了一个统一的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal cases of distortion risk measures with partial information
This paper considers the best- and worst-case of a general class of distortion risk measures when only partial information regarding the underlying distributions is available. Specifically, explicit sharp lower and upper bounds for a general class of distortion risk measures are derived based on the first two moments along with some shape information, such as symmetry/unimodality property of the underlying distributions. The proposed approach provides a unified framework for extremal problems of distortion risk measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信