{"title":"阈值非线性条件下电离层中无线电发射传播的特征","authors":"V. A. Eremenko, N. I. Manaenkova","doi":"10.1134/S0016793223601047","DOIUrl":null,"url":null,"abstract":"<p>The well-known problem of nonlinear wave–ionosphere interaction under conditions of threshold nonlinearity is considered. It is believed that nonlinear effects arise only for high-power radiation, when the wave amplitude exceeds a certain threshold value. The possibility of the existence of concentrated wave fields under these conditions is shown. It is revealed that a certain ratio of nonlinearity parameters leads to an increase in the radio emission intensity, since the interaction of individual solitons can lead to their merging into a higher-power solitary wave. The presence of threshold nonlinearity can lead to the formation of an ordered structure of solitary waves.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of Radio Emission Propagation in the Ionosphere under Conditions of Threshold Nonlinearity\",\"authors\":\"V. A. Eremenko, N. I. Manaenkova\",\"doi\":\"10.1134/S0016793223601047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The well-known problem of nonlinear wave–ionosphere interaction under conditions of threshold nonlinearity is considered. It is believed that nonlinear effects arise only for high-power radiation, when the wave amplitude exceeds a certain threshold value. The possibility of the existence of concentrated wave fields under these conditions is shown. It is revealed that a certain ratio of nonlinearity parameters leads to an increase in the radio emission intensity, since the interaction of individual solitons can lead to their merging into a higher-power solitary wave. The presence of threshold nonlinearity can lead to the formation of an ordered structure of solitary waves.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793223601047\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793223601047","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Features of Radio Emission Propagation in the Ionosphere under Conditions of Threshold Nonlinearity
The well-known problem of nonlinear wave–ionosphere interaction under conditions of threshold nonlinearity is considered. It is believed that nonlinear effects arise only for high-power radiation, when the wave amplitude exceeds a certain threshold value. The possibility of the existence of concentrated wave fields under these conditions is shown. It is revealed that a certain ratio of nonlinearity parameters leads to an increase in the radio emission intensity, since the interaction of individual solitons can lead to their merging into a higher-power solitary wave. The presence of threshold nonlinearity can lead to the formation of an ordered structure of solitary waves.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.