{"title":"涉及函数数据的局部经验过程的函数统一带宽适度偏差原理","authors":"Nour-Eddine Berrahou, Salim Bouzebda, Lahcen Douge","doi":"10.3103/s1066530724700030","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Our research employs general empirical process methods to investigate and establish moderate deviation principles for kernel-type function estimators that rely on an infinite-dimensional covariate, subject to mild regularity conditions. In doing so, we introduce a valuable moderate deviation principle for a function-indexed process, utilizing intricate exponential contiguity arguments. The primary objective of this paper is to contribute to the existing literature on functional data analysis by establishing functional moderate deviation principles for both Nadaraya–Watson and conditional distribution processes. These principles serve as fundamental tools for analyzing and understanding the behavior of these processes in the context of functional data analysis. By extending the scope of moderate deviation principles to the realm of functional data analysis, we enhance our understanding of the statistical properties and limitations of kernel-type function estimators when dealing with infinite-dimensional covariates. Our findings provide valuable insights and contribute to the advancement of statistical methodology in functional data analysis.</p>","PeriodicalId":46039,"journal":{"name":"Mathematical Methods of Statistics","volume":"57 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Uniform-in-Bandwidth Moderate Deviation Principle for the Local Empirical Processes Involving Functional Data\",\"authors\":\"Nour-Eddine Berrahou, Salim Bouzebda, Lahcen Douge\",\"doi\":\"10.3103/s1066530724700030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Our research employs general empirical process methods to investigate and establish moderate deviation principles for kernel-type function estimators that rely on an infinite-dimensional covariate, subject to mild regularity conditions. In doing so, we introduce a valuable moderate deviation principle for a function-indexed process, utilizing intricate exponential contiguity arguments. The primary objective of this paper is to contribute to the existing literature on functional data analysis by establishing functional moderate deviation principles for both Nadaraya–Watson and conditional distribution processes. These principles serve as fundamental tools for analyzing and understanding the behavior of these processes in the context of functional data analysis. By extending the scope of moderate deviation principles to the realm of functional data analysis, we enhance our understanding of the statistical properties and limitations of kernel-type function estimators when dealing with infinite-dimensional covariates. Our findings provide valuable insights and contribute to the advancement of statistical methodology in functional data analysis.</p>\",\"PeriodicalId\":46039,\"journal\":{\"name\":\"Mathematical Methods of Statistics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1066530724700030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066530724700030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Functional Uniform-in-Bandwidth Moderate Deviation Principle for the Local Empirical Processes Involving Functional Data
Abstract
Our research employs general empirical process methods to investigate and establish moderate deviation principles for kernel-type function estimators that rely on an infinite-dimensional covariate, subject to mild regularity conditions. In doing so, we introduce a valuable moderate deviation principle for a function-indexed process, utilizing intricate exponential contiguity arguments. The primary objective of this paper is to contribute to the existing literature on functional data analysis by establishing functional moderate deviation principles for both Nadaraya–Watson and conditional distribution processes. These principles serve as fundamental tools for analyzing and understanding the behavior of these processes in the context of functional data analysis. By extending the scope of moderate deviation principles to the realm of functional data analysis, we enhance our understanding of the statistical properties and limitations of kernel-type function estimators when dealing with infinite-dimensional covariates. Our findings provide valuable insights and contribute to the advancement of statistical methodology in functional data analysis.
期刊介绍:
Mathematical Methods of Statistics is an is an international peer reviewed journal dedicated to the mathematical foundations of statistical theory. It primarily publishes research papers with complete proofs and, occasionally, review papers on particular problems of statistics. Papers dealing with applications of statistics are also published if they contain new theoretical developments to the underlying statistical methods. The journal provides an outlet for research in advanced statistical methodology and for studies where such methodology is effectively used or which stimulate its further development.