识别复杂人类活动的形式-统计协同模型

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nikolaos Bourbakis;Anargyros Angeleas
{"title":"识别复杂人类活动的形式-统计协同模型","authors":"Nikolaos Bourbakis;Anargyros Angeleas","doi":"10.1109/THMS.2024.3382468","DOIUrl":null,"url":null,"abstract":"This article presents a view-independent synergistic model (formal and statistical) for efficiently recognizing complex human activities from video frames. To reduce the computational cost, the number of video frames is subsampled from 30 to 3 frames/s. SKD, a collaborative set of formal languages (\n<underline>S</u>\nOMA, \n<underline>K</u>\nINISIS, and \n<underline>D</u>\nRASIS), models simple and complex body actions and activities. SOMA language is a frame-based formal language representing body states (poses) extracted from frames. KINISIS is a formal language that uses the body poses extracted from SOMA to determine the consecutive poses (motion) that compose an activity. DRASIS language, finally, a convolution neural net, is used to classify simple activities, and an long short-term memory is used to recognize changes in activity. Experimental results using the SKD model on MSR Daily Activity three-dimensional (3-D) and UTKinect-Action3D datasets have shown that our method is among the top ones.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Synergistic Formal-Statistical Model for Recognizing Complex Human Activities\",\"authors\":\"Nikolaos Bourbakis;Anargyros Angeleas\",\"doi\":\"10.1109/THMS.2024.3382468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a view-independent synergistic model (formal and statistical) for efficiently recognizing complex human activities from video frames. To reduce the computational cost, the number of video frames is subsampled from 30 to 3 frames/s. SKD, a collaborative set of formal languages (\\n<underline>S</u>\\nOMA, \\n<underline>K</u>\\nINISIS, and \\n<underline>D</u>\\nRASIS), models simple and complex body actions and activities. SOMA language is a frame-based formal language representing body states (poses) extracted from frames. KINISIS is a formal language that uses the body poses extracted from SOMA to determine the consecutive poses (motion) that compose an activity. DRASIS language, finally, a convolution neural net, is used to classify simple activities, and an long short-term memory is used to recognize changes in activity. Experimental results using the SKD model on MSR Daily Activity three-dimensional (3-D) and UTKinect-Action3D datasets have shown that our method is among the top ones.\",\"PeriodicalId\":48916,\"journal\":{\"name\":\"IEEE Transactions on Human-Machine Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Human-Machine Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10508483/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508483/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种与视图无关的协同模型(形式和统计),用于从视频帧中高效识别复杂的人类活动。为降低计算成本,视频帧数的采样率从 30 帧/秒降至 3 帧/秒。SKD 是一组协作的形式语言(SOMA、KINISIS 和 DRASIS),可模拟简单和复杂的身体动作和活动。SOMA 语言是一种基于帧的形式语言,表示从帧中提取的身体状态(姿势)。KINISIS 是一种形式语言,它使用从 SOMA 中提取的身体姿势来确定构成活动的连续姿势(运动)。最后,DRASIS 语言是一种卷积神经网络,用于对简单的活动进行分类,而长短期记忆则用于识别活动的变化。在 MSR 日常活动三维(3-D)和UTKinect-Action3D 数据集上使用 SKD 模型的实验结果表明,我们的方法是最好的方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Synergistic Formal-Statistical Model for Recognizing Complex Human Activities
This article presents a view-independent synergistic model (formal and statistical) for efficiently recognizing complex human activities from video frames. To reduce the computational cost, the number of video frames is subsampled from 30 to 3 frames/s. SKD, a collaborative set of formal languages ( S OMA, K INISIS, and D RASIS), models simple and complex body actions and activities. SOMA language is a frame-based formal language representing body states (poses) extracted from frames. KINISIS is a formal language that uses the body poses extracted from SOMA to determine the consecutive poses (motion) that compose an activity. DRASIS language, finally, a convolution neural net, is used to classify simple activities, and an long short-term memory is used to recognize changes in activity. Experimental results using the SKD model on MSR Daily Activity three-dimensional (3-D) and UTKinect-Action3D datasets have shown that our method is among the top ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信