基于神经网络识别石墨烯中的多个纳米气泡

Subin Kim, Nojoon Myoung, Seunghyun Jun, Ara Go
{"title":"基于神经网络识别石墨烯中的多个纳米气泡","authors":"Subin Kim, Nojoon Myoung, Seunghyun Jun, Ara Go","doi":"arxiv-2404.15658","DOIUrl":null,"url":null,"abstract":"We present a machine learning method for swiftly identifying nanobubbles in\ngraphene, crucial for understanding electronic transport in graphene-based\ndevices. Nanobubbles cause local strain, impacting graphene's transport\nproperties. Traditional techniques like optical imaging are slow and limited\nfor characterizing multiple nanobubbles. Our approach uses neural networks to\nanalyze graphene's density of states, enabling rapid detection and\ncharacterization of nanobubbles from electronic transport data. This method\nswiftly enumerates nanobubbles and surpasses conventional imaging methods in\nefficiency and speed. It enhances quality assessment and optimization of\ngraphene nanodevices, marking a significant advance in condensed matter physics\nand materials science. Our technique offers an efficient solution for probing\nthe interplay between nanoscale features and electronic properties in\ntwo-dimensional materials.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network-based recognition of multiple nanobubbles in graphene\",\"authors\":\"Subin Kim, Nojoon Myoung, Seunghyun Jun, Ara Go\",\"doi\":\"arxiv-2404.15658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a machine learning method for swiftly identifying nanobubbles in\\ngraphene, crucial for understanding electronic transport in graphene-based\\ndevices. Nanobubbles cause local strain, impacting graphene's transport\\nproperties. Traditional techniques like optical imaging are slow and limited\\nfor characterizing multiple nanobubbles. Our approach uses neural networks to\\nanalyze graphene's density of states, enabling rapid detection and\\ncharacterization of nanobubbles from electronic transport data. This method\\nswiftly enumerates nanobubbles and surpasses conventional imaging methods in\\nefficiency and speed. It enhances quality assessment and optimization of\\ngraphene nanodevices, marking a significant advance in condensed matter physics\\nand materials science. Our technique offers an efficient solution for probing\\nthe interplay between nanoscale features and electronic properties in\\ntwo-dimensional materials.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.15658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种快速识别石墨烯中纳米气泡的机器学习方法,这种方法对于了解石墨烯基器件中的电子传输至关重要。纳米气泡会造成局部应变,影响石墨烯的传输特性。传统技术(如光学成像)在表征多个纳米气泡时既缓慢又有限。我们的方法利用神经网络来分析石墨烯的态密度,从而能够从电子传输数据中快速检测和表征纳米气泡。这种方法能迅速枚举纳米气泡,在效率和速度上都超过了传统的成像方法。它增强了石墨烯纳米器件的质量评估和优化,标志着凝聚态物理学和材料科学的重大进步。我们的技术为探测二维材料的纳米级特征与电子特性之间的相互作用提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network-based recognition of multiple nanobubbles in graphene
We present a machine learning method for swiftly identifying nanobubbles in graphene, crucial for understanding electronic transport in graphene-based devices. Nanobubbles cause local strain, impacting graphene's transport properties. Traditional techniques like optical imaging are slow and limited for characterizing multiple nanobubbles. Our approach uses neural networks to analyze graphene's density of states, enabling rapid detection and characterization of nanobubbles from electronic transport data. This method swiftly enumerates nanobubbles and surpasses conventional imaging methods in efficiency and speed. It enhances quality assessment and optimization of graphene nanodevices, marking a significant advance in condensed matter physics and materials science. Our technique offers an efficient solution for probing the interplay between nanoscale features and electronic properties in two-dimensional materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信