二次增长条件下带重启的分布式加速梯度方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chhavi Sharma, Vishnu Narayanan, P. Balamurugan
{"title":"二次增长条件下带重启的分布式加速梯度方法","authors":"Chhavi Sharma, Vishnu Narayanan, P. Balamurugan","doi":"10.1007/s10898-024-01395-z","DOIUrl":null,"url":null,"abstract":"<p>We consider solving convex problems satisfying quadratic growth condition (QGC) over a distributed setting with no central server. Such problems are popular in distributed machine learning applications. When QGC growth parameter <i>c</i> is known, we propose distributed accelerated gradient methods with restarts, named PDACA and DACA respectively for constrained and unconstrained settings. In practical problems when <i>c</i> is unavailable, we design mPDACA and mDACA methods respectively for constrained and unconstrained settings, where novel distributed mechanisms are proposed to update the estimates of growth parameter <i>c</i> using only local quantities depending on local proximal operators or local gradients. We further derive theoretical guarantees and gradient computation and communication complexities for all four proposed algorithms. Extensive numerical experiments on logistic regression on different communication topologies showcase the utility of our algorithms in comparison with baseline methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed accelerated gradient methods with restart under quadratic growth condition\",\"authors\":\"Chhavi Sharma, Vishnu Narayanan, P. Balamurugan\",\"doi\":\"10.1007/s10898-024-01395-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider solving convex problems satisfying quadratic growth condition (QGC) over a distributed setting with no central server. Such problems are popular in distributed machine learning applications. When QGC growth parameter <i>c</i> is known, we propose distributed accelerated gradient methods with restarts, named PDACA and DACA respectively for constrained and unconstrained settings. In practical problems when <i>c</i> is unavailable, we design mPDACA and mDACA methods respectively for constrained and unconstrained settings, where novel distributed mechanisms are proposed to update the estimates of growth parameter <i>c</i> using only local quantities depending on local proximal operators or local gradients. We further derive theoretical guarantees and gradient computation and communication complexities for all four proposed algorithms. Extensive numerical experiments on logistic regression on different communication topologies showcase the utility of our algorithms in comparison with baseline methods.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01395-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01395-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在没有中心服务器的分布式环境中解决满足二次增长条件(QGC)的凸问题。这类问题在分布式机器学习应用中很受欢迎。当 QGC 增长参数 c 已知时,我们提出了具有重启功能的分布式加速梯度方法,在有约束和无约束环境下分别命名为 PDACA 和 DACA。在 c 不可用的实际问题中,我们分别针对受限和无约束设置设计了 mPDACA 和 mDACA 方法,其中提出了新的分布式机制,仅使用取决于局部近算子或局部梯度的局部量来更新增长参数 c 的估计值。我们进一步推导了所有四种拟议算法的理论保证、梯度计算和通信复杂性。在不同通信拓扑结构上对逻辑回归进行的大量数值实验表明,与基线方法相比,我们的算法非常实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distributed accelerated gradient methods with restart under quadratic growth condition

Distributed accelerated gradient methods with restart under quadratic growth condition

We consider solving convex problems satisfying quadratic growth condition (QGC) over a distributed setting with no central server. Such problems are popular in distributed machine learning applications. When QGC growth parameter c is known, we propose distributed accelerated gradient methods with restarts, named PDACA and DACA respectively for constrained and unconstrained settings. In practical problems when c is unavailable, we design mPDACA and mDACA methods respectively for constrained and unconstrained settings, where novel distributed mechanisms are proposed to update the estimates of growth parameter c using only local quantities depending on local proximal operators or local gradients. We further derive theoretical guarantees and gradient computation and communication complexities for all four proposed algorithms. Extensive numerical experiments on logistic regression on different communication topologies showcase the utility of our algorithms in comparison with baseline methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信