非单调加载的格里菲斯断裂描述及其在疲劳中的应用

Subhrangsu Saha, John E. Dolbow, Oscar Lopez-Pamies
{"title":"非单调加载的格里菲斯断裂描述及其在疲劳中的应用","authors":"Subhrangsu Saha, John E. Dolbow, Oscar Lopez-Pamies","doi":"arxiv-2404.13466","DOIUrl":null,"url":null,"abstract":"With the fundamental objective of establishing the universality of the\nGriffith energy competition to describe the growth of large cracks in solids\n\\emph{not} just under monotonic but under general loading conditions, this\npaper puts forth a generalization of the classical Griffith energy competition\nin nominally elastic brittle materials to arbitrary \\emph{non-monotonic}\nquasistatic loading conditions, which include monotonic and cyclic loadings as\nspecial cases. Centered around experimental observations, the idea consists in:\n$i$) viewing the critical energy release rate $\\mathcal{G}_c$ \\emph{not} as a\nmaterial constant but rather as a material function of both space $\\textbf{X}$\nand time $t$, $ii$) one that decreases in value as the loading progresses, this\nsolely within a small region $\\Omega_\\ell(t)$ around crack fronts, with the\ncharacteristic size $\\ell$ of such a region being material specific, and $iii$)\nwith the decrease in value of $\\mathcal{G}_c$ being dependent on the history of\nthe elastic fields in $\\Omega_\\ell(t)$. By construction, the proposed Griffith\nformulation is able to describe any Paris-law behavior of the growth of large\ncracks in nominally elastic brittle materials for the limiting case when the\nloading is cyclic. For the opposite limiting case when the loading is\nmonotonic, the formulation reduces to the classical Griffith formulation.\nAdditional properties of the proposed formulation are illustrated via a\nparametric analysis and direct comparisons with representative fatigue fracture\nexperiments on a ceramic, mortar, and PMMA.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Griffith description of fracture for non-monotonic loading with application to fatigue\",\"authors\":\"Subhrangsu Saha, John E. Dolbow, Oscar Lopez-Pamies\",\"doi\":\"arxiv-2404.13466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the fundamental objective of establishing the universality of the\\nGriffith energy competition to describe the growth of large cracks in solids\\n\\\\emph{not} just under monotonic but under general loading conditions, this\\npaper puts forth a generalization of the classical Griffith energy competition\\nin nominally elastic brittle materials to arbitrary \\\\emph{non-monotonic}\\nquasistatic loading conditions, which include monotonic and cyclic loadings as\\nspecial cases. Centered around experimental observations, the idea consists in:\\n$i$) viewing the critical energy release rate $\\\\mathcal{G}_c$ \\\\emph{not} as a\\nmaterial constant but rather as a material function of both space $\\\\textbf{X}$\\nand time $t$, $ii$) one that decreases in value as the loading progresses, this\\nsolely within a small region $\\\\Omega_\\\\ell(t)$ around crack fronts, with the\\ncharacteristic size $\\\\ell$ of such a region being material specific, and $iii$)\\nwith the decrease in value of $\\\\mathcal{G}_c$ being dependent on the history of\\nthe elastic fields in $\\\\Omega_\\\\ell(t)$. By construction, the proposed Griffith\\nformulation is able to describe any Paris-law behavior of the growth of large\\ncracks in nominally elastic brittle materials for the limiting case when the\\nloading is cyclic. For the opposite limiting case when the loading is\\nmonotonic, the formulation reduces to the classical Griffith formulation.\\nAdditional properties of the proposed formulation are illustrated via a\\nparametric analysis and direct comparisons with representative fatigue fracture\\nexperiments on a ceramic, mortar, and PMMA.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.13466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的基本目标是建立格里菲斯能量竞争的普遍性,以描述固体(emph{不}仅在单调加载条件下,而是在一般加载条件下)大裂缝的生长,本文提出了在名义弹性脆性材料中经典格里菲斯能量竞争的一般化,以适应任意(emph{非单调}类静态加载条件,包括单调加载和循环加载等特殊情况。以实验观察为中心,其思路包括i$) 将临界能量释放率 $\mathcal{G}_c$ \emph{not}视为一个物质常数,而是空间 $\textbf{X}$ 和时间 $t$ 的物质函数;ii$) 随着加载的进行,临界能量释放率的值会减小、(iii)随着加载的进行,其值会减小,但这仅仅是在裂缝前沿周围的一个小区域内,该区域的特征尺寸为 $\Omega_\ell(t)$,而该区域的材料是特定的;(iii)$mathcal{G}_c$值的减小取决于$\Omega_\ell(t)$中弹性场的历史。根据构造,在循环加载的极限情况下,所提出的格里菲斯公式能够描述名义弹性脆性材料中大裂纹生长的任何巴黎定律行为。通过参数分析以及与陶瓷、砂浆和聚甲基丙烯酸甲酯的代表性疲劳断裂实验的直接比较,说明了所提公式的其他特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Griffith description of fracture for non-monotonic loading with application to fatigue
With the fundamental objective of establishing the universality of the Griffith energy competition to describe the growth of large cracks in solids \emph{not} just under monotonic but under general loading conditions, this paper puts forth a generalization of the classical Griffith energy competition in nominally elastic brittle materials to arbitrary \emph{non-monotonic} quasistatic loading conditions, which include monotonic and cyclic loadings as special cases. Centered around experimental observations, the idea consists in: $i$) viewing the critical energy release rate $\mathcal{G}_c$ \emph{not} as a material constant but rather as a material function of both space $\textbf{X}$ and time $t$, $ii$) one that decreases in value as the loading progresses, this solely within a small region $\Omega_\ell(t)$ around crack fronts, with the characteristic size $\ell$ of such a region being material specific, and $iii$) with the decrease in value of $\mathcal{G}_c$ being dependent on the history of the elastic fields in $\Omega_\ell(t)$. By construction, the proposed Griffith formulation is able to describe any Paris-law behavior of the growth of large cracks in nominally elastic brittle materials for the limiting case when the loading is cyclic. For the opposite limiting case when the loading is monotonic, the formulation reduces to the classical Griffith formulation. Additional properties of the proposed formulation are illustrated via a parametric analysis and direct comparisons with representative fatigue fracture experiments on a ceramic, mortar, and PMMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信