扭曲同层 TMD 中的绝热近似和阿哈诺夫-卡舍尔带

Jingtian Shi, Nicolás Morales-Durán, Eslam Khalaf, Allan H. MacDonald
{"title":"扭曲同层 TMD 中的绝热近似和阿哈诺夫-卡舍尔带","authors":"Jingtian Shi, Nicolás Morales-Durán, Eslam Khalaf, Allan H. MacDonald","doi":"arxiv-2404.13455","DOIUrl":null,"url":null,"abstract":"Topological flat moir\\'e bands with nearly ideal quantum geometry have been\nidentified in AA homobilayer transition metal dichalcogenide moir\\'e\nsuperlattices, and are thought to be crucial for understanding the fractional\nChern insulating states recently observed therein. Previous work proposed\nviewing the system using an adiabatic approximation that replaces the\nposition-dependence of the layer spinor by a nonuniform periodic effective\nmagnetic field. When the local zero-point kinetic energy of this magnetic field\ncancels identically against that of an effective Zeeman energy, a Bloch-band\nversion of Aharonov-Casher zero-energy modes, which we refer to as\nAharonov-Casher band, emerges leading to ideal quantum geometry. Here, we\ncritically examine the validity of the adiabatic approximation and identify the\nparameter regimes under which Aharonov-Casher bands emerge. We show that the\nadiabatic approximation is accurate for a wide range of parameters including\nthose realized in experiments. Furthermore, we show that while the cancellation\nleading to the emergence of Aharonov-Casher bands is generally not possible\nbeyond the leading Fourier harmonic, the leading harmonic is the dominant term\nin the Fourier expansions of the zero-point kinetic energy and Zeeman energy.\nAs a result, the leading harmonic expansion accurately captures the trend of\nthe bandwidth and quantum geometry, though it may fail to quantitatively\nreproduce more detailed information about the bands such as the Berry curvature\ndistribution.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adiabatic Approximation and Aharonov-Casher Bands in Twisted Homobilayer TMDs\",\"authors\":\"Jingtian Shi, Nicolás Morales-Durán, Eslam Khalaf, Allan H. MacDonald\",\"doi\":\"arxiv-2404.13455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological flat moir\\\\'e bands with nearly ideal quantum geometry have been\\nidentified in AA homobilayer transition metal dichalcogenide moir\\\\'e\\nsuperlattices, and are thought to be crucial for understanding the fractional\\nChern insulating states recently observed therein. Previous work proposed\\nviewing the system using an adiabatic approximation that replaces the\\nposition-dependence of the layer spinor by a nonuniform periodic effective\\nmagnetic field. When the local zero-point kinetic energy of this magnetic field\\ncancels identically against that of an effective Zeeman energy, a Bloch-band\\nversion of Aharonov-Casher zero-energy modes, which we refer to as\\nAharonov-Casher band, emerges leading to ideal quantum geometry. Here, we\\ncritically examine the validity of the adiabatic approximation and identify the\\nparameter regimes under which Aharonov-Casher bands emerge. We show that the\\nadiabatic approximation is accurate for a wide range of parameters including\\nthose realized in experiments. Furthermore, we show that while the cancellation\\nleading to the emergence of Aharonov-Casher bands is generally not possible\\nbeyond the leading Fourier harmonic, the leading harmonic is the dominant term\\nin the Fourier expansions of the zero-point kinetic energy and Zeeman energy.\\nAs a result, the leading harmonic expansion accurately captures the trend of\\nthe bandwidth and quantum geometry, though it may fail to quantitatively\\nreproduce more detailed information about the bands such as the Berry curvature\\ndistribution.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.13455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在AA同双层过渡金属二掺杂化合物超晶格中发现了具有近乎理想量子几何形状的拓扑平坦莫尔(e)带,这被认为是理解最近在其中观察到的分数切尔诺绝缘态的关键。之前的研究提出使用绝热近似来观察该系统,即用非均匀周期性有效磁场来取代层旋子的位置依赖性。当该磁场的局部零点动能与有效泽曼能完全相消时,阿哈诺夫-卡舍尔零能模式的布洛赫带(我们称之为阿哈诺夫-卡舍尔带)就会出现,从而导致理想的量子几何。在这里,我们严格检验了绝热近似的有效性,并确定了阿哈诺夫-卡舍带出现的参数区间。我们证明,绝热近似对于广泛的参数(包括实验中实现的参数)都是准确的。此外,我们还表明,虽然导致阿哈诺夫-卡舍带出现的取消一般不可能超出前导傅里叶谐波,但前导谐波在零点动能和泽曼能的傅里叶展开中是主要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adiabatic Approximation and Aharonov-Casher Bands in Twisted Homobilayer TMDs
Topological flat moir\'e bands with nearly ideal quantum geometry have been identified in AA homobilayer transition metal dichalcogenide moir\'e superlattices, and are thought to be crucial for understanding the fractional Chern insulating states recently observed therein. Previous work proposed viewing the system using an adiabatic approximation that replaces the position-dependence of the layer spinor by a nonuniform periodic effective magnetic field. When the local zero-point kinetic energy of this magnetic field cancels identically against that of an effective Zeeman energy, a Bloch-band version of Aharonov-Casher zero-energy modes, which we refer to as Aharonov-Casher band, emerges leading to ideal quantum geometry. Here, we critically examine the validity of the adiabatic approximation and identify the parameter regimes under which Aharonov-Casher bands emerge. We show that the adiabatic approximation is accurate for a wide range of parameters including those realized in experiments. Furthermore, we show that while the cancellation leading to the emergence of Aharonov-Casher bands is generally not possible beyond the leading Fourier harmonic, the leading harmonic is the dominant term in the Fourier expansions of the zero-point kinetic energy and Zeeman energy. As a result, the leading harmonic expansion accurately captures the trend of the bandwidth and quantum geometry, though it may fail to quantitatively reproduce more detailed information about the bands such as the Berry curvature distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信