论对角吲哚群的同质空间

Pub Date : 2024-04-25 DOI:10.1007/s00031-024-09853-4
Lucas Fresse, Ivan Penkov
{"title":"论对角吲哚群的同质空间","authors":"Lucas Fresse, Ivan Penkov","doi":"10.1007/s00031-024-09853-4","DOIUrl":null,"url":null,"abstract":"<p>We study the homogeneous ind-spaces <span>\\(\\textrm{GL}(\\textbf{s})/\\textbf{P}\\)</span> where <span>\\(\\textrm{GL}(\\textbf{s})\\)</span> is a strict diagonal ind-group defined by a supernatural number <span>\\(\\textbf{s}\\)</span> and <span>\\(\\textbf{P}\\)</span> is a parabolic ind-subgroup of <span>\\(\\textrm{GL}(\\textbf{s})\\)</span>. We construct an explicit exhaustion of <span>\\(\\textrm{GL}(\\textbf{s})/\\textbf{P}\\)</span> by finite-dimensional partial flag varieties. As an application, we characterize all locally projective <span>\\(\\textrm{GL}(\\infty )\\)</span>-homogeneous spaces, and some direct products of such spaces, which are <span>\\(\\textrm{GL}(\\textbf{s})\\)</span>-homogeneous for a fixed <span>\\(\\textbf{s}\\)</span>. The very possibility for a <span>\\(\\textrm{GL}(\\infty )\\)</span>-homogeneous space to be <span>\\(\\textrm{GL}(\\textbf{s})\\)</span>-homogeneous for a strict diagonal ind-group <span>\\(\\textrm{GL}(\\textbf{s})\\)</span> arises from the fact that the automorphism group of a <span>\\(\\textrm{GL}(\\infty )\\)</span>-homogeneous space is much larger than <span>\\(\\textrm{GL}(\\infty )\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Homogeneous Spaces for Diagonal Ind-Groups\",\"authors\":\"Lucas Fresse, Ivan Penkov\",\"doi\":\"10.1007/s00031-024-09853-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the homogeneous ind-spaces <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})/\\\\textbf{P}\\\\)</span> where <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})\\\\)</span> is a strict diagonal ind-group defined by a supernatural number <span>\\\\(\\\\textbf{s}\\\\)</span> and <span>\\\\(\\\\textbf{P}\\\\)</span> is a parabolic ind-subgroup of <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})\\\\)</span>. We construct an explicit exhaustion of <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})/\\\\textbf{P}\\\\)</span> by finite-dimensional partial flag varieties. As an application, we characterize all locally projective <span>\\\\(\\\\textrm{GL}(\\\\infty )\\\\)</span>-homogeneous spaces, and some direct products of such spaces, which are <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})\\\\)</span>-homogeneous for a fixed <span>\\\\(\\\\textbf{s}\\\\)</span>. The very possibility for a <span>\\\\(\\\\textrm{GL}(\\\\infty )\\\\)</span>-homogeneous space to be <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})\\\\)</span>-homogeneous for a strict diagonal ind-group <span>\\\\(\\\\textrm{GL}(\\\\textbf{s})\\\\)</span> arises from the fact that the automorphism group of a <span>\\\\(\\\\textrm{GL}(\\\\infty )\\\\)</span>-homogeneous space is much larger than <span>\\\\(\\\\textrm{GL}(\\\\infty )\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00031-024-09853-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09853-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了同质内空间 (\textrm{GL}(\textbf{s})/\textbf{P}\),其中 (\textrm{GL}(\textbf{s})\)是由超自然数 (\textbf{s}\)定义的严格对角内空间群,而 (\textbf{P}\)是一个抛物线内空间子群。是一个由超自然数 \(\textbf{s}\) 定义的严格对角 ind- 群,而 \(\textbf{P}\) 是 \(\textrm{GL}(\textbf{s})\) 的一个抛物线 ind 子群。我们通过有限维部分旗子变体构建了 \(\textrm{GL}(\textbf{s})/\textbf{P}\) 的显式穷竭。作为应用,我们描述了所有局部投影的(\textrm{GL}(\infty )\)-同构空间,以及这些空间的一些直接乘积,它们对于固定的(\textbf{s})是(\textrm{GL}(\textbf{s})\)-同构的。对于一个严格对角的吲哚-组来说,一个同质空间是(\textrm{GL}(\textbf{s})\)-同质的,这种可能性是非常大的。(\textrm{GL}(\textbf{s})\)-同调空间的自变群要比\(\textrm{GL}(\textbf{s})\)-同调空间大得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Homogeneous Spaces for Diagonal Ind-Groups

分享
查看原文
On Homogeneous Spaces for Diagonal Ind-Groups

We study the homogeneous ind-spaces \(\textrm{GL}(\textbf{s})/\textbf{P}\) where \(\textrm{GL}(\textbf{s})\) is a strict diagonal ind-group defined by a supernatural number \(\textbf{s}\) and \(\textbf{P}\) is a parabolic ind-subgroup of \(\textrm{GL}(\textbf{s})\). We construct an explicit exhaustion of \(\textrm{GL}(\textbf{s})/\textbf{P}\) by finite-dimensional partial flag varieties. As an application, we characterize all locally projective \(\textrm{GL}(\infty )\)-homogeneous spaces, and some direct products of such spaces, which are \(\textrm{GL}(\textbf{s})\)-homogeneous for a fixed \(\textbf{s}\). The very possibility for a \(\textrm{GL}(\infty )\)-homogeneous space to be \(\textrm{GL}(\textbf{s})\)-homogeneous for a strict diagonal ind-group \(\textrm{GL}(\textbf{s})\) arises from the fact that the automorphism group of a \(\textrm{GL}(\infty )\)-homogeneous space is much larger than \(\textrm{GL}(\infty )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信