在线性规划模型中寻找替代解决方案的迭代 MILP 算法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dev A. Kakkad, Ignacio E. Grossmann, Bianca Springub, Christos Galanopoulos, Leonardo Salsano de Assis, Nga Tran, John M. Wassick
{"title":"在线性规划模型中寻找替代解决方案的迭代 MILP 算法","authors":"Dev A. Kakkad, Ignacio E. Grossmann, Bianca Springub, Christos Galanopoulos, Leonardo Salsano de Assis, Nga Tran, John M. Wassick","doi":"10.1007/s11081-024-09887-3","DOIUrl":null,"url":null,"abstract":"<p>We address in this paper linear programming (LP) models in which it is desired to find a finite set of alternate optima. An LP may have multiple alternate solutions with the same objective value or with increasing objective values. For many real life applications, it can be interesting to have a pool of solutions to compare what operations should be executed and what is the cost/benefit of doing it. To obtain a specified number of these alternate solutions in the increasing order of objective values, we propose an iterative MILP algorithm in which we successively add integer cuts on inactive constraints. We demonstrate the application and effectiveness of this algorithm on a 2 dimensional LP and on small and large supply chain problems. The proposed iterative MILP algorithm provides an effective approach for finding a specified number of alternate optima in LP models, which provides a useful tool in a variety of applications as for instance in supply chain optimization problems.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative MILP algorithm to find alternate solutions in linear programming models\",\"authors\":\"Dev A. Kakkad, Ignacio E. Grossmann, Bianca Springub, Christos Galanopoulos, Leonardo Salsano de Assis, Nga Tran, John M. Wassick\",\"doi\":\"10.1007/s11081-024-09887-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address in this paper linear programming (LP) models in which it is desired to find a finite set of alternate optima. An LP may have multiple alternate solutions with the same objective value or with increasing objective values. For many real life applications, it can be interesting to have a pool of solutions to compare what operations should be executed and what is the cost/benefit of doing it. To obtain a specified number of these alternate solutions in the increasing order of objective values, we propose an iterative MILP algorithm in which we successively add integer cuts on inactive constraints. We demonstrate the application and effectiveness of this algorithm on a 2 dimensional LP and on small and large supply chain problems. The proposed iterative MILP algorithm provides an effective approach for finding a specified number of alternate optima in LP models, which provides a useful tool in a variety of applications as for instance in supply chain optimization problems.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-024-09887-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09887-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们在本文中讨论了线性规划(LP)模型,在这些模型中,我们希望找到一组有限的备用最优解。一个 LP 可能有多个目标值相同或目标值递增的备用解决方案。在现实生活中的许多应用中,拥有一组解决方案来比较应该执行哪些操作以及这样做的成本/收益是非常有趣的。为了按照目标值递增的顺序获得一定数量的备用解决方案,我们提出了一种迭代 MILP 算法,在该算法中,我们连续添加了对非活动约束条件的整数切分。我们演示了该算法在二维 LP 以及小型和大型供应链问题上的应用和有效性。所提出的迭代 MILP 算法为在 LP 模型中寻找指定数量的备用最优值提供了一种有效的方法,为供应链优化问题等各种应用提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iterative MILP algorithm to find alternate solutions in linear programming models

Iterative MILP algorithm to find alternate solutions in linear programming models

We address in this paper linear programming (LP) models in which it is desired to find a finite set of alternate optima. An LP may have multiple alternate solutions with the same objective value or with increasing objective values. For many real life applications, it can be interesting to have a pool of solutions to compare what operations should be executed and what is the cost/benefit of doing it. To obtain a specified number of these alternate solutions in the increasing order of objective values, we propose an iterative MILP algorithm in which we successively add integer cuts on inactive constraints. We demonstrate the application and effectiveness of this algorithm on a 2 dimensional LP and on small and large supply chain problems. The proposed iterative MILP algorithm provides an effective approach for finding a specified number of alternate optima in LP models, which provides a useful tool in a variety of applications as for instance in supply chain optimization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信